{"title":"涉及极导数的多项式的bernstein型不等式","authors":"A. Hussain, A. Mir, Abrar Ahmad","doi":"10.7153/jca-2020-16-02","DOIUrl":null,"url":null,"abstract":". In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Bernstein-type inequalities for polynomials involving the polar derivative\",\"authors\":\"A. Hussain, A. Mir, Abrar Ahmad\",\"doi\":\"10.7153/jca-2020-16-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2020-16-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2020-16-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
. 本文建立了一个不消失于圆盘| z | < k, k (cid:2) 1的多项式的极导数的上界估计,该多项式在原点处的多重性为s, 0 (cid:3) s (cid:3) n−1。所得到的结果使我们能够推导出一些著名的伯恩斯坦型不等式的极导数类似物作为特殊情况。
On Bernstein-type inequalities for polynomials involving the polar derivative
. In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.