涉及极导数的多项式的bernstein型不等式

A. Hussain, A. Mir, Abrar Ahmad
{"title":"涉及极导数的多项式的bernstein型不等式","authors":"A. Hussain, A. Mir, Abrar Ahmad","doi":"10.7153/jca-2020-16-02","DOIUrl":null,"url":null,"abstract":". In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Bernstein-type inequalities for polynomials involving the polar derivative\",\"authors\":\"A. Hussain, A. Mir, Abrar Ahmad\",\"doi\":\"10.7153/jca-2020-16-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2020-16-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2020-16-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 本文建立了一个不消失于圆盘| z | < k, k (cid:2) 1的多项式的极导数的上界估计,该多项式在原点处的多重性为s, 0 (cid:3) s (cid:3) n−1。所得到的结果使我们能够推导出一些著名的伯恩斯坦型不等式的极导数类似物作为特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bernstein-type inequalities for polynomials involving the polar derivative
. In this paper, we establish some upper bound estimates for the polar derivative of a polynomial not vanishing in a disk | z | < k , k (cid:2) 1 with a zero of multiplicity s , 0 (cid:3) s (cid:3) n − 1 at the origin. The obtained results enable us to derive polar derivative analogues of some well known Bernstein-type inequalities as special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信