关于多项式和有理函数的有除差分表征

F. Dubeau
{"title":"关于多项式和有理函数的有除差分表征","authors":"F. Dubeau","doi":"10.7153/JCA-2020-16-09","DOIUrl":null,"url":null,"abstract":". In this paper we present two conjectures about the characterization of functions by conditions on their divided differences. To analyze the conjectures and prove some results, we recall some facts about the Hermite interpolation problem including the computation of divided differences for positive and negative powers of x .","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the characterization of polynomials and rational functions using divided differences\",\"authors\":\"F. Dubeau\",\"doi\":\"10.7153/JCA-2020-16-09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we present two conjectures about the characterization of functions by conditions on their divided differences. To analyze the conjectures and prove some results, we recall some facts about the Hermite interpolation problem including the computation of divided differences for positive and negative powers of x .\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/JCA-2020-16-09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JCA-2020-16-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 在本文中,我们提出了用函数的可分差条件来表征函数的两个猜想。为了分析这些猜想并证明一些结果,我们回顾了关于Hermite插值问题的一些事实,包括对x的正负幂的差的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the characterization of polynomials and rational functions using divided differences
. In this paper we present two conjectures about the characterization of functions by conditions on their divided differences. To analyze the conjectures and prove some results, we recall some facts about the Hermite interpolation problem including the computation of divided differences for positive and negative powers of x .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信