Eneström-Kakeya定理的推广及其在解析函数中的推广

N. A. Rather, Ishfaq Dar, A. Iqbal
{"title":"Eneström-Kakeya定理的推广及其在解析函数中的推广","authors":"N. A. Rather, Ishfaq Dar, A. Iqbal","doi":"10.7153/jca-2020-16-05","DOIUrl":null,"url":null,"abstract":"In this paper, by using standard techniques we shall obtain a result that gives regions containing all the zeros of a polynomial with real coefficients. Our result not only generalizes several well-known results concerning the location of zeros of polynomials but also yields an answer to a question raised by Professor N. K. Govil. We also obtain a similar result for analytic functions. In addition to this, we show by examples that our result gives better information about the bounds of zeros of polynomials than some known results. Mathematics subject classification (2010): 30A10, 30C15.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalization of Eneström-Kakeya theorem and its extension to analytic functions\",\"authors\":\"N. A. Rather, Ishfaq Dar, A. Iqbal\",\"doi\":\"10.7153/jca-2020-16-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by using standard techniques we shall obtain a result that gives regions containing all the zeros of a polynomial with real coefficients. Our result not only generalizes several well-known results concerning the location of zeros of polynomials but also yields an answer to a question raised by Professor N. K. Govil. We also obtain a similar result for analytic functions. In addition to this, we show by examples that our result gives better information about the bounds of zeros of polynomials than some known results. Mathematics subject classification (2010): 30A10, 30C15.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2020-16-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2020-16-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,通过使用标准技术,我们将得到一个结果,该结果给出了包含实系数多项式的所有零的区域。我们的结果不仅推广了几个著名的关于多项式零点位置的结果,而且对N. K. Govil教授提出的一个问题给出了答案。对于解析函数,我们也得到了类似的结果。除此之外,我们还通过实例表明,我们的结果比一些已知的结果提供了关于多项式零点边界的更好信息。数学学科分类(2010):30A10, 30C15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of Eneström-Kakeya theorem and its extension to analytic functions
In this paper, by using standard techniques we shall obtain a result that gives regions containing all the zeros of a polynomial with real coefficients. Our result not only generalizes several well-known results concerning the location of zeros of polynomials but also yields an answer to a question raised by Professor N. K. Govil. We also obtain a similar result for analytic functions. In addition to this, we show by examples that our result gives better information about the bounds of zeros of polynomials than some known results. Mathematics subject classification (2010): 30A10, 30C15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信