弱加权共享亚纯函数齐次微分多项式的唯一性

D. C. Pramanik, Jayanta Roy
{"title":"弱加权共享亚纯函数齐次微分多项式的唯一性","authors":"D. C. Pramanik, Jayanta Roy","doi":"10.7153/jca-2020-16-04","DOIUrl":null,"url":null,"abstract":". In 2006 S. Lin and W. Lin [3] fi rst de fi ned the concept of weakly-weighted sharing of functions and proved some results on uniqueness of a meromorphic function f and its n -th derivative f ( n ) . Using this notion of weakly-weighted sharing of functions, in this paper we prove uniqueness of homogeneous differential polynomials P [ f ] and P [ g ] generated by mero- morphic functions f and g respectively.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of homogeneous differential polynomials of meromorphic functions concerning weakly weighted sharing\",\"authors\":\"D. C. Pramanik, Jayanta Roy\",\"doi\":\"10.7153/jca-2020-16-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In 2006 S. Lin and W. Lin [3] fi rst de fi ned the concept of weakly-weighted sharing of functions and proved some results on uniqueness of a meromorphic function f and its n -th derivative f ( n ) . Using this notion of weakly-weighted sharing of functions, in this paper we prove uniqueness of homogeneous differential polynomials P [ f ] and P [ g ] generated by mero- morphic functions f and g respectively.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2020-16-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2020-16-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。2006年S. Lin和W. Lin [3]fi首次定义了函数的弱加权共享概念,并证明了亚纯函数f及其n阶导数f (n)的唯一性。利用函数的弱加权共享的概念,证明了分别由亚模函数f和g生成的齐次微分多项式P [f]和P [g]的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of homogeneous differential polynomials of meromorphic functions concerning weakly weighted sharing
. In 2006 S. Lin and W. Lin [3] fi rst de fi ned the concept of weakly-weighted sharing of functions and proved some results on uniqueness of a meromorphic function f and its n -th derivative f ( n ) . Using this notion of weakly-weighted sharing of functions, in this paper we prove uniqueness of homogeneous differential polynomials P [ f ] and P [ g ] generated by mero- morphic functions f and g respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信