新的有趣的欧拉和

A. Nimbran, A. Sofo
{"title":"新的有趣的欧拉和","authors":"A. Nimbran, A. Sofo","doi":"10.7153/jca-2019-15-02","DOIUrl":null,"url":null,"abstract":". We present here some new and interesting Euler sums obtained by means of related integrals and elementary approach. We supplement Euler’s general recurrence formula with two general formulas of the form ∑ n (cid:2) 1 O ( m ) n (cid:2) 1 ( 2 n − 1 ) p + 1 ( 2 n ) p (cid:3) and ∑ n (cid:2) 1 O n ( 2 n − 1 ) p ( 2 n + 1 ) q , where O ( m ) n = n ∑ j = 1 1 ( 2 j − 1 ) m . Two formulas for ζ ( 5 ) are also derived.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New interesting Euler sums\",\"authors\":\"A. Nimbran, A. Sofo\",\"doi\":\"10.7153/jca-2019-15-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present here some new and interesting Euler sums obtained by means of related integrals and elementary approach. We supplement Euler’s general recurrence formula with two general formulas of the form ∑ n (cid:2) 1 O ( m ) n (cid:2) 1 ( 2 n − 1 ) p + 1 ( 2 n ) p (cid:3) and ∑ n (cid:2) 1 O n ( 2 n − 1 ) p ( 2 n + 1 ) q , where O ( m ) n = n ∑ j = 1 1 ( 2 j − 1 ) m . Two formulas for ζ ( 5 ) are also derived.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2019-15-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2019-15-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

. 我们现在呈现出一些新的和有趣的欧拉sums我们一起supplement欧拉公式的将军recurrence二将军formulas∑n (cid》没有注明:2 O (m) n (cid) 1: 2) 1 (n−1)p n + 1 (2) p (cid: 3)和∑n (cid 2) 1 O n (n−1)p (n + 1) q,在O (m) n = n∑j j = 1号(2−1)m。为ζ(5)是两个formulas也derived。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New interesting Euler sums
. We present here some new and interesting Euler sums obtained by means of related integrals and elementary approach. We supplement Euler’s general recurrence formula with two general formulas of the form ∑ n (cid:2) 1 O ( m ) n (cid:2) 1 ( 2 n − 1 ) p + 1 ( 2 n ) p (cid:3) and ∑ n (cid:2) 1 O n ( 2 n − 1 ) p ( 2 n + 1 ) q , where O ( m ) n = n ∑ j = 1 1 ( 2 j − 1 ) m . Two formulas for ζ ( 5 ) are also derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信