{"title":"加权粗糙i - λ收敛的Bernstein算子的三重序列","authors":"N. Subramanian, A. Esi","doi":"10.7153/jca-2018-13-02","DOIUrl":null,"url":null,"abstract":". We introduce and study some basic properties of rough I λ -convergence of weight g , where g : N 3 → [ 0 , ∞ ) is a function satisfying g ( m , n , k ) → ∞ and (cid:3) ( m , n , k ) (cid:3) g ( m , n , k ) (cid:4)→ 0 as m , n , k → ∞ , of triple sequence of Bernstein polynomials and also study the set of all rough I λ -convergence of weight g limits of a triple sequence of Bernstein polynomials and relation between analyticness and rough I λ -convergence of weight g of a triple sequences of Bernstein polynomials.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":"45-62"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On triple sequence of Bernstein operator of weighted rough I_λ-convergence\",\"authors\":\"N. Subramanian, A. Esi\",\"doi\":\"10.7153/jca-2018-13-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We introduce and study some basic properties of rough I λ -convergence of weight g , where g : N 3 → [ 0 , ∞ ) is a function satisfying g ( m , n , k ) → ∞ and (cid:3) ( m , n , k ) (cid:3) g ( m , n , k ) (cid:4)→ 0 as m , n , k → ∞ , of triple sequence of Bernstein polynomials and also study the set of all rough I λ -convergence of weight g limits of a triple sequence of Bernstein polynomials and relation between analyticness and rough I λ -convergence of weight g of a triple sequences of Bernstein polynomials.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"45-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2018-13-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2018-13-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
. 我们引入并研究了权值g的粗糙I λ -收敛的一些基本性质,其中g:N 3→[0,∞)是一个函数满足g (m, N, k)→∞和(cid: 3) (m, N, k) (cid: 3) g (m, N, k) (cid: 4)→0 m, N, k→∞,三重伯恩斯坦多项式序列以及研究的所有粗糙的集合我λ收敛的重量g三重伯恩斯坦多项式序列的极限和关系analyticness我粗略的λ收敛的重量克三伯恩斯坦多项式序列。
On triple sequence of Bernstein operator of weighted rough I_λ-convergence
. We introduce and study some basic properties of rough I λ -convergence of weight g , where g : N 3 → [ 0 , ∞ ) is a function satisfying g ( m , n , k ) → ∞ and (cid:3) ( m , n , k ) (cid:3) g ( m , n , k ) (cid:4)→ 0 as m , n , k → ∞ , of triple sequence of Bernstein polynomials and also study the set of all rough I λ -convergence of weight g limits of a triple sequence of Bernstein polynomials and relation between analyticness and rough I λ -convergence of weight g of a triple sequences of Bernstein polynomials.