基于度相关图生成的差分隐私保护

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
WangYue, WUXin-Tao
{"title":"基于度相关图生成的差分隐私保护","authors":"WangYue, WUXin-Tao","doi":"10.5555/2612167.2612168","DOIUrl":null,"url":null,"abstract":"Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is d...","PeriodicalId":44319,"journal":{"name":"Transactions on Data Privacy","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Preserving Differential Privacy in Degree-Correlation based Graph Generation\",\"authors\":\"WangYue, WUXin-Tao\",\"doi\":\"10.5555/2612167.2612168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is d...\",\"PeriodicalId\":44319,\"journal\":{\"name\":\"Transactions on Data Privacy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Data Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2612167.2612168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Data Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2612167.2612168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

摘要

在保持差异隐私的同时,实现对社交网络数据的准确分析一直是一项挑战,因为聚类系数等图形特征通常具有很高的灵敏度,这是一项挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is d...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions on Data Privacy
Transactions on Data Privacy COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信