{"title":"具有变符号权函数的临界分数阶方程的多重性结果","authors":"Yang Pu, Jia‐Feng Liao","doi":"10.7153/DEA-2021-13-09","DOIUrl":null,"url":null,"abstract":". In this paper, we consider a time-independent fractional equation: where Ω is a smooth bounded domain, s ∈ ( 0 , 1 ) , N > 2 s 0 < q < 1, the coef fi cient functions f and g may change sign. We fi rst obtain the existence of ground state solution by the Nehari method under the combined effect of coef fi cient functions. Then we fi nd the multiplicity of positive solutions by Mountain pass theorem under some stronger conditions, and one of them is a ground state solution.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results for critical fractional equations with sign-changing weight functions\",\"authors\":\"Yang Pu, Jia‐Feng Liao\",\"doi\":\"10.7153/DEA-2021-13-09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider a time-independent fractional equation: where Ω is a smooth bounded domain, s ∈ ( 0 , 1 ) , N > 2 s 0 < q < 1, the coef fi cient functions f and g may change sign. We fi rst obtain the existence of ground state solution by the Nehari method under the combined effect of coef fi cient functions. Then we fi nd the multiplicity of positive solutions by Mountain pass theorem under some stronger conditions, and one of them is a ground state solution.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
. 本文考虑一个与时间无关的分数阶方程,其中Ω是光滑有界域,s∈(0,1),N bbb20 s 0 < q < 1,系数函数f和g可以改变符号。首先用Nehari方法得到了在系数函数联合作用下基态解的存在性。然后利用山口定理,在一些较强的条件下求出正解的多重性,其中一个正解是基态解。
Multiplicity results for critical fractional equations with sign-changing weight functions
. In this paper, we consider a time-independent fractional equation: where Ω is a smooth bounded domain, s ∈ ( 0 , 1 ) , N > 2 s 0 < q < 1, the coef fi cient functions f and g may change sign. We fi rst obtain the existence of ground state solution by the Nehari method under the combined effect of coef fi cient functions. Then we fi nd the multiplicity of positive solutions by Mountain pass theorem under some stronger conditions, and one of them is a ground state solution.