Mohammed El Mokhtar Ould El Mokhtar, Zeid I. Almuhiameed
{"title":"具有奇异非线性、Hardy-Sobolev临界指数和权值的奇异椭圆方程","authors":"Mohammed El Mokhtar Ould El Mokhtar, Zeid I. Almuhiameed","doi":"10.7153/dea-2020-12-25","DOIUrl":null,"url":null,"abstract":". This article is devoted to the existence and multiplicity to the following singular ellip- tic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights: where Ω is a smooth bounded domain in R N ( N (cid:2) 3 ) , 0 ∈ Ω , λ > 0, 0 (cid:3) μ < μ N : = ( N − 2 ) 2 / 4, p = 2 ∗ ( s ) = 2 ( N − s ) / ( N − 2 ) with 0 < s < 2 is the critical Hardy-Sobolev critical exponent, 0 (cid:3) α < N ( p − 1 + β ) / p , 0 < β < 1 and 2 < p (cid:3) 2 ∗ : = 2 N / ( N − 2 ) is the critical Sobolev exponent. By using the Nehari manifold and mountain pass theorem, the existence of at least four distinct solutions is obtained.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On singular elliptic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights\",\"authors\":\"Mohammed El Mokhtar Ould El Mokhtar, Zeid I. Almuhiameed\",\"doi\":\"10.7153/dea-2020-12-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article is devoted to the existence and multiplicity to the following singular ellip- tic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights: where Ω is a smooth bounded domain in R N ( N (cid:2) 3 ) , 0 ∈ Ω , λ > 0, 0 (cid:3) μ < μ N : = ( N − 2 ) 2 / 4, p = 2 ∗ ( s ) = 2 ( N − s ) / ( N − 2 ) with 0 < s < 2 is the critical Hardy-Sobolev critical exponent, 0 (cid:3) α < N ( p − 1 + β ) / p , 0 < β < 1 and 2 < p (cid:3) 2 ∗ : = 2 N / ( N − 2 ) is the critical Sobolev exponent. By using the Nehari manifold and mountain pass theorem, the existence of at least four distinct solutions is obtained.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2020-12-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2020-12-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
摘要
. 这文章devoted to the》的存在和multiplicity跟踪单数和单数ellip - tic equation nonlinearities, Hardy-Sobolev连接exponent和举重:Ω在哪里a smooth bounded域名在R N (N (cid: 2.0) 3),∈Ω,λ> 0,0 (cid): 3)μ<μN = (N−2)2 / 4,p =∗(s) = 2 (N−s) / s (N−2)和0 < < 2就是连接Hardy-Sobolev连接exponent, 0 (cid) 3:α< N (p−1 +β)- p, 0 <β< 1和2 < p (cid): 3)∗:= N / (N−2)是《连接Sobolev exponent。通过使用Nehari manifold和mountain pass theorem,最不重要的四种关键解决方案是保密的。
On singular elliptic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights
. This article is devoted to the existence and multiplicity to the following singular ellip- tic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights: where Ω is a smooth bounded domain in R N ( N (cid:2) 3 ) , 0 ∈ Ω , λ > 0, 0 (cid:3) μ < μ N : = ( N − 2 ) 2 / 4, p = 2 ∗ ( s ) = 2 ( N − s ) / ( N − 2 ) with 0 < s < 2 is the critical Hardy-Sobolev critical exponent, 0 (cid:3) α < N ( p − 1 + β ) / p , 0 < β < 1 and 2 < p (cid:3) 2 ∗ : = 2 N / ( N − 2 ) is the critical Sobolev exponent. By using the Nehari manifold and mountain pass theorem, the existence of at least four distinct solutions is obtained.