{"title":"α-阶分数阶微分方程正解的存在性与不存在性的特征值准则,(2 < α;< 3),在半线上","authors":"Abdelhamid Benmezaï, S. Chentout","doi":"10.7153/dea-2019-11-22","DOIUrl":null,"url":null,"abstract":". This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eigenvalue criteria for existence and nonexistence of positive solutions for α-order fractional differential equations,(2 < α; < 3), on the half-line\",\"authors\":\"Abdelhamid Benmezaï, S. Chentout\",\"doi\":\"10.7153/dea-2019-11-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
本文研究分数阶微分方程{Dα u(t)+ f (t,u(t)) = 0,0 t <∞,u(0) = Dα−2u(0) =极限→∞Dα−1u(t) = 0,其中α∈(2,3),Dα是标准Riemann-Liouville导数,f: R+ ×R+→R+是连续函数的不存在性和存在性。这里得到的主要结果是在特征值准则下得到的。数学学科分类(2010):26A33, 34B16, 34B18, 34B27。
Eigenvalue criteria for existence and nonexistence of positive solutions for α-order fractional differential equations,(2 < α; < 3), on the half-line
. This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.