α-阶分数阶微分方程正解的存在性与不存在性的特征值准则,(2 < α;< 3),在半线上

IF 0.7 Q3 MATHEMATICS, APPLIED
Abdelhamid Benmezaï, S. Chentout
{"title":"α-阶分数阶微分方程正解的存在性与不存在性的特征值准则,(2 < α;< 3),在半线上","authors":"Abdelhamid Benmezaï, S. Chentout","doi":"10.7153/dea-2019-11-22","DOIUrl":null,"url":null,"abstract":". This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eigenvalue criteria for existence and nonexistence of positive solutions for α-order fractional differential equations,(2 < α; < 3), on the half-line\",\"authors\":\"Abdelhamid Benmezaï, S. Chentout\",\"doi\":\"10.7153/dea-2019-11-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究分数阶微分方程{Dα u(t)+ f (t,u(t)) = 0,0 t <∞,u(0) = Dα−2u(0) =极限→∞Dα−1u(t) = 0,其中α∈(2,3),Dα是标准Riemann-Liouville导数,f: R+ ×R+→R+是连续函数的不存在性和存在性。这里得到的主要结果是在特征值准则下得到的。数学学科分类(2010):26A33, 34B16, 34B18, 34B27。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalue criteria for existence and nonexistence of positive solutions for α-order fractional differential equations,(2 < α; < 3), on the half-line
. This article concerns nonexistence and existence of positive solutions to the fractional differential equation where α ∈ ( 2 , 3 ) , D α is the standard Riemann-Liouville derivative and f : R + × R + → R + is a continuous function. The main results obtained here, are under eigenvalue criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信