{"title":"hardy - hsamnon抛物型系统的渐近自相似全局解","authors":"B. Slimene","doi":"10.7153/dea-2019-11-21","DOIUrl":null,"url":null,"abstract":". In this paper we study the nonlinear parabolic system ∂ t u = Δ u + a | x | − γ | v | p − 1 v , ∂ t v = Δ v + b | x | − ρ | u | q − 1 u , t > 0, x ∈ R N \\{ 0 } , N (cid:2) 1, a , b ∈ R , 0 (cid:3) γ < min ( N , 2 ) , 0 < ρ < min ( N , 2 ) , p , q > 1. Under conditions on the parameters p , q , γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In partic- ular, we show the existence of self-similar solutions with initial value Φ = ( ϕ 1 , ϕ 2 ) , where ϕ 1 , ϕ 2 are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Asymptotically self-similar global solutions for Hardy-Hénon parabolic systems\",\"authors\":\"B. Slimene\",\"doi\":\"10.7153/dea-2019-11-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we study the nonlinear parabolic system ∂ t u = Δ u + a | x | − γ | v | p − 1 v , ∂ t v = Δ v + b | x | − ρ | u | q − 1 u , t > 0, x ∈ R N \\\\{ 0 } , N (cid:2) 1, a , b ∈ R , 0 (cid:3) γ < min ( N , 2 ) , 0 < ρ < min ( N , 2 ) , p , q > 1. Under conditions on the parameters p , q , γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In partic- ular, we show the existence of self-similar solutions with initial value Φ = ( ϕ 1 , ϕ 2 ) , where ϕ 1 , ϕ 2 are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13
摘要
. 在本文中,我们研究了非线性抛物系统∂x t u =Δu + | |−γ| | p−1 v,∂x t v =Δv + b | |−ρ| | q−1 u, t > 0, x∈R N \ {0}, N (cid: 2) 1, a, b∈R, 0 (cid: 3)γ< min (N, 2), 0 <ρ< min (N, 2), p, q > 1。在参数p, q, γ和ρ的条件下,我们证明了初值小的全局解对某些范数的存在唯一性。特别地,我们证明了初始值Φ = (Φ 1, Φ 2)的自相似解的存在性,其中Φ 1, Φ 2是齐次初始数据。我们还证明了一些全局解在大时间内对自相似解是渐近的。
Asymptotically self-similar global solutions for Hardy-Hénon parabolic systems
. In this paper we study the nonlinear parabolic system ∂ t u = Δ u + a | x | − γ | v | p − 1 v , ∂ t v = Δ v + b | x | − ρ | u | q − 1 u , t > 0, x ∈ R N \{ 0 } , N (cid:2) 1, a , b ∈ R , 0 (cid:3) γ < min ( N , 2 ) , 0 < ρ < min ( N , 2 ) , p , q > 1. Under conditions on the parameters p , q , γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In partic- ular, we show the existence of self-similar solutions with initial value Φ = ( ϕ 1 , ϕ 2 ) , where ϕ 1 , ϕ 2 are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions.