具有Δ-Carathéodory函数的时间尺度上的广义一阶动态方程

IF 0.7 Q3 MATHEMATICS, APPLIED
Sanket Tikare
{"title":"具有Δ-Carathéodory函数的时间尺度上的广义一阶动态方程","authors":"Sanket Tikare","doi":"10.7153/dea-2019-11-06","DOIUrl":null,"url":null,"abstract":"In this paper we consider a first order dynamic equation on time scales in which the right hand side is a Δ -Carathéodory function, which is not necessarily continuous. We generalize this discontinuous dynamic equation using Henstock–Kurzweil Δ -integral and establish results concerning existence of solutions using simple analysis. Uniqueness of solutions is obtained using an Osgood type condition. Moreover we introduce the concept of Henstock–Kurzweil Δ -equi-integrability and study continuous dependence and convergence of solutions.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized first order dynamic equations on time scales with Δ-Carathéodory functions\",\"authors\":\"Sanket Tikare\",\"doi\":\"10.7153/dea-2019-11-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a first order dynamic equation on time scales in which the right hand side is a Δ -Carathéodory function, which is not necessarily continuous. We generalize this discontinuous dynamic equation using Henstock–Kurzweil Δ -integral and establish results concerning existence of solutions using simple analysis. Uniqueness of solutions is obtained using an Osgood type condition. Moreover we introduce the concept of Henstock–Kurzweil Δ -equi-integrability and study continuous dependence and convergence of solutions.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类时间尺度上的一阶动力学方程,方程的右侧为Δ - carathacimodory函数,它不一定是连续的。我们用Henstock-Kurzweil Δ积分推广了这一不连续动力学方程,并用简单的分析建立了解的存在性结果。利用Osgood型条件得到了解的唯一性。引入了Henstock-Kurzweil Δ -等可积性的概念,研究了解的连续依赖性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized first order dynamic equations on time scales with Δ-Carathéodory functions
In this paper we consider a first order dynamic equation on time scales in which the right hand side is a Δ -Carathéodory function, which is not necessarily continuous. We generalize this discontinuous dynamic equation using Henstock–Kurzweil Δ -integral and establish results concerning existence of solutions using simple analysis. Uniqueness of solutions is obtained using an Osgood type condition. Moreover we introduce the concept of Henstock–Kurzweil Δ -equi-integrability and study continuous dependence and convergence of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信