非瞬时脉冲微分方程的Razumikhin延迟方法

IF 0.7 Q3 MATHEMATICS, APPLIED
R. Agarwal, S. Hristova, D. Regan
{"title":"非瞬时脉冲微分方程的Razumikhin延迟方法","authors":"R. Agarwal, S. Hristova, D. Regan","doi":"10.7153/dea-2019-11-05","DOIUrl":null,"url":null,"abstract":"The stability for delay differential equations with non-instantaneous impulses is studied using Lyapunov like functions and the Razumikhin technique. In these differential equations we have impulses, which start abruptly at some points and their action continue on given finite intervals. Sufficient conditions are given and they use comparison results for nonlinear scalar non-instantaneous impulsive equation without any delay. Examples are given to illustrate our stability properties and the influence of non-instantaneous impulses on the behavior of the solution.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Razumikhin method to delay differential equations with non-instantaneous impulses\",\"authors\":\"R. Agarwal, S. Hristova, D. Regan\",\"doi\":\"10.7153/dea-2019-11-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability for delay differential equations with non-instantaneous impulses is studied using Lyapunov like functions and the Razumikhin technique. In these differential equations we have impulses, which start abruptly at some points and their action continue on given finite intervals. Sufficient conditions are given and they use comparison results for nonlinear scalar non-instantaneous impulsive equation without any delay. Examples are given to illustrate our stability properties and the influence of non-instantaneous impulses on the behavior of the solution.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用类Lyapunov函数和Razumikhin技术研究了具有非瞬时脉冲的时滞微分方程的稳定性。在这些微分方程中,我们有脉冲,它们在某些点突然开始,它们的作用在给定的有限间隔内继续。给出了无时滞非线性标量非瞬时脉冲方程的充分条件,并使用了比较结果。举例说明了我们的稳定性和非瞬时脉冲对解行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Razumikhin method to delay differential equations with non-instantaneous impulses
The stability for delay differential equations with non-instantaneous impulses is studied using Lyapunov like functions and the Razumikhin technique. In these differential equations we have impulses, which start abruptly at some points and their action continue on given finite intervals. Sufficient conditions are given and they use comparison results for nonlinear scalar non-instantaneous impulsive equation without any delay. Examples are given to illustrate our stability properties and the influence of non-instantaneous impulses on the behavior of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信