一类具有两个参数的非线性高阶分数阶q差分边值问题的奇异耦合系统的正解

IF 0.7 Q3 MATHEMATICS, APPLIED
Wengui Yang
{"title":"一类具有两个参数的非线性高阶分数阶q差分边值问题的奇异耦合系统的正解","authors":"Wengui Yang","doi":"10.7153/dea-2019-11-25","DOIUrl":null,"url":null,"abstract":"In this paper, we are concern with the existence of positive solutions for a singular system of nonlinear fractional q -difference equations with coupled integral boundary conditions and two parameters. By using the properties of the Green’s function and Guo-Krasnosel’skii fixed point theorem, some existence results of at least one positive solution are obtained. As applications, two examples are presented to illustrate the main results. Mathematics subject classification (2010): 39A13, 34B18, 34A08.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions for a singular coupled system of nonlinear higher-order fractional q-difference boundary value problems with two parameters\",\"authors\":\"Wengui Yang\",\"doi\":\"10.7153/dea-2019-11-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concern with the existence of positive solutions for a singular system of nonlinear fractional q -difference equations with coupled integral boundary conditions and two parameters. By using the properties of the Green’s function and Guo-Krasnosel’skii fixed point theorem, some existence results of at least one positive solution are obtained. As applications, two examples are presented to illustrate the main results. Mathematics subject classification (2010): 39A13, 34B18, 34A08.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一类具有耦合积分边界条件和两个参数的非线性分数阶q差分方程奇异系统正解的存在性。利用格林函数和郭氏不动点定理的性质,得到了至少一个正解的存在性结果。作为应用,给出了两个例子来说明主要结果。数学学科分类(2010):39A13、34B18、34A08。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive solutions for a singular coupled system of nonlinear higher-order fractional q-difference boundary value problems with two parameters
In this paper, we are concern with the existence of positive solutions for a singular system of nonlinear fractional q -difference equations with coupled integral boundary conditions and two parameters. By using the properties of the Green’s function and Guo-Krasnosel’skii fixed point theorem, some existence results of at least one positive solution are obtained. As applications, two examples are presented to illustrate the main results. Mathematics subject classification (2010): 39A13, 34B18, 34A08.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信