Hölder具有自然生长项的非线性四阶椭圆方程解的边界连续性

IF 0.7 Q3 MATHEMATICS, APPLIED
S. Bonafede, M. Voitovych
{"title":"Hölder具有自然生长项的非线性四阶椭圆方程解的边界连续性","authors":"S. Bonafede, M. Voitovych","doi":"10.7153/DEA-2019-11-03","DOIUrl":null,"url":null,"abstract":"In a bounded open set Ω ⊂ Rn , n 3 , we consider the nonlinear fourth-order partial differential equation ∑|α|=1,2 (−1)|α|Dα Aα(x,u,Du,Du)+B(x,u,Du,Du) = 0. It is assumed that the principal coefficients {Aα}|α|=1,2 satisfy the growth and coercivity conditions suitable for the energy space W̊ 1,q 2,p (Ω) = W̊ 1,q(Ω)∩W̊ 2,p(Ω) , 1 < p< n/2 , 2p < q < n . The lower-order term B(x,u,Du,D2u) behaves as b(u) {|Du|q + |D2u|p}+g(x) where g ∈ Lτ (Ω) , τ > n/q . We establish the Hölder continuity up to the boundary of any solution u∈ W̊ 1,q 2,p (Ω)∩L∞(Ω) by using the measure density condition on ∂Ω , an interior local result and a modified Moser method with special test function.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hölder continuity up to the boundary of solutions to nonlinear fourth-order elliptic equations with natural growth terms\",\"authors\":\"S. Bonafede, M. Voitovych\",\"doi\":\"10.7153/DEA-2019-11-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a bounded open set Ω ⊂ Rn , n 3 , we consider the nonlinear fourth-order partial differential equation ∑|α|=1,2 (−1)|α|Dα Aα(x,u,Du,Du)+B(x,u,Du,Du) = 0. It is assumed that the principal coefficients {Aα}|α|=1,2 satisfy the growth and coercivity conditions suitable for the energy space W̊ 1,q 2,p (Ω) = W̊ 1,q(Ω)∩W̊ 2,p(Ω) , 1 < p< n/2 , 2p < q < n . The lower-order term B(x,u,Du,D2u) behaves as b(u) {|Du|q + |D2u|p}+g(x) where g ∈ Lτ (Ω) , τ > n/q . We establish the Hölder continuity up to the boundary of any solution u∈ W̊ 1,q 2,p (Ω)∩L∞(Ω) by using the measure density condition on ∂Ω , an interior local result and a modified Moser method with special test function.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2019-11-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2019-11-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

在有界开集Ω∧Rn, n 3中,我们考虑非线性四阶偏微分方程∑|α|=1,2(−1)|α|Dα a α(x,u,Du,Du)+B(x,u,Du,Du) = 0。假设主系数{Aα}|α|=1,2满足能量空间W∶1,q2,p(Ω) = W∶1,q(Ω)∩W∶2,p(Ω), 1 < p< n/2, 2p < q < n的生长和矫顽力条件。低阶项B(x,u,Du,D2u)表现为B(u) {|Du|q + |D2u|p}+g(x),其中g∈Lτ (Ω), τ > n/q。我们利用∂Ω上的测度密度条件、一个内部局部结果和一个带有特殊测试函数的改进Moser方法,建立了任意解u∈W _ _ 1,q 2,p (Ω)∩L∞(Ω)到边界的Hölder连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hölder continuity up to the boundary of solutions to nonlinear fourth-order elliptic equations with natural growth terms
In a bounded open set Ω ⊂ Rn , n 3 , we consider the nonlinear fourth-order partial differential equation ∑|α|=1,2 (−1)|α|Dα Aα(x,u,Du,Du)+B(x,u,Du,Du) = 0. It is assumed that the principal coefficients {Aα}|α|=1,2 satisfy the growth and coercivity conditions suitable for the energy space W̊ 1,q 2,p (Ω) = W̊ 1,q(Ω)∩W̊ 2,p(Ω) , 1 < p< n/2 , 2p < q < n . The lower-order term B(x,u,Du,D2u) behaves as b(u) {|Du|q + |D2u|p}+g(x) where g ∈ Lτ (Ω) , τ > n/q . We establish the Hölder continuity up to the boundary of any solution u∈ W̊ 1,q 2,p (Ω)∩L∞(Ω) by using the measure density condition on ∂Ω , an interior local result and a modified Moser method with special test function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信