分数阶lyapunov型不等式的非格林函数方法及其在多元域上的应用

IF 0.7 Q3 MATHEMATICS, APPLIED
Sougata Dhar, J. Kelly
{"title":"分数阶lyapunov型不等式的非格林函数方法及其在多元域上的应用","authors":"Sougata Dhar, J. Kelly","doi":"10.7153/DEA-2019-11-19","DOIUrl":null,"url":null,"abstract":". We derive Lyapunov-type inequalities for certain fractional differential equations of order α , where 1 < α (cid:2) 2 or 2 < α (cid:2) 3. The methods used within rely on considering the maximum value of a nontrivial solution in a given interval as opposed to traditional methods which utilize the Green’s function. This particular method provides versatility and can be applied to other fractional boundary value problems where the Green’s function is inaccessible. Furthermore, we demonstrate how the inequalities may be extended to fractional multivariate equations in both the left and right-fractional cases.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A non Green's function approach to fractional Lyapunov-type inequalities with applications to multivariate domains\",\"authors\":\"Sougata Dhar, J. Kelly\",\"doi\":\"10.7153/DEA-2019-11-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We derive Lyapunov-type inequalities for certain fractional differential equations of order α , where 1 < α (cid:2) 2 or 2 < α (cid:2) 3. The methods used within rely on considering the maximum value of a nontrivial solution in a given interval as opposed to traditional methods which utilize the Green’s function. This particular method provides versatility and can be applied to other fractional boundary value problems where the Green’s function is inaccessible. Furthermore, we demonstrate how the inequalities may be extended to fractional multivariate equations in both the left and right-fractional cases.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2019-11-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2019-11-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

。对于1 < α (cid:2) 2或2 < α (cid:2) 3的一类α阶分数阶微分方程,导出了lyapunov型不等式。与利用格林函数的传统方法相反,本文使用的方法依赖于考虑给定区间内非平凡解的最大值。这种特殊的方法提供了通用性,可以应用于其他分数边值问题,其中格林函数是不可接近的。此外,我们证明了在左分数和右分数情况下,不等式如何可以推广到分数多元方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non Green's function approach to fractional Lyapunov-type inequalities with applications to multivariate domains
. We derive Lyapunov-type inequalities for certain fractional differential equations of order α , where 1 < α (cid:2) 2 or 2 < α (cid:2) 3. The methods used within rely on considering the maximum value of a nontrivial solution in a given interval as opposed to traditional methods which utilize the Green’s function. This particular method provides versatility and can be applied to other fractional boundary value problems where the Green’s function is inaccessible. Furthermore, we demonstrate how the inequalities may be extended to fractional multivariate equations in both the left and right-fractional cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信