具有临界增长的分数阶kirchhoff型方程系统的多重解

IF 0.7 Q3 MATHEMATICS, APPLIED
A. Costa, B. Maia
{"title":"具有临界增长的分数阶kirchhoff型方程系统的多重解","authors":"A. Costa, B. Maia","doi":"10.7153/dea-2020-12-11","DOIUrl":null,"url":null,"abstract":". In this paper we are going to study existence and multiplicity of solutions of a system involving fractional Kirchhoff-type and critical growth of form where s ∈ ( 0 , 1 ) , n > 2 s , Ω ⊂ R n is a bounded and open set, 2 ∗ s = 2 n / ( n − 2 s ) denotes the fractional critical Sobolev exponent, the functions M 1 , M 2 , f and g are continuous functions, ( − Δ ) s is the fractional laplacian operator, || . || X is a norm in the fractional Hilbert Sobolev space X ( Ω ) , F ( x , v ( x )) = v x , G x , ( x )) g ( τ ) d τ , r 1 and r 2 are positive constants, λ and γ are real parameters. For this problem we prove the existence of in fi nitely many solutions, via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii. Also we show that these solutions are suf fi ciently regular and solve the problem pointwise.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple solutions of systems involving fractional Kirchhoff-type equations with critical growth\",\"authors\":\"A. Costa, B. Maia\",\"doi\":\"10.7153/dea-2020-12-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we are going to study existence and multiplicity of solutions of a system involving fractional Kirchhoff-type and critical growth of form where s ∈ ( 0 , 1 ) , n > 2 s , Ω ⊂ R n is a bounded and open set, 2 ∗ s = 2 n / ( n − 2 s ) denotes the fractional critical Sobolev exponent, the functions M 1 , M 2 , f and g are continuous functions, ( − Δ ) s is the fractional laplacian operator, || . || X is a norm in the fractional Hilbert Sobolev space X ( Ω ) , F ( x , v ( x )) = v x , G x , ( x )) g ( τ ) d τ , r 1 and r 2 are positive constants, λ and γ are real parameters. For this problem we prove the existence of in fi nitely many solutions, via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii. Also we show that these solutions are suf fi ciently regular and solve the problem pointwise.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2020-12-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2020-12-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

. 在本文中,我们要学习系统的存在性和多重性的解决方案涉及部分Kirchhoff-type和形式的关键增长年代∈(0,1),n > 2 s,Ω⊂R n是一个有界和开集,2∗s = 2 n / (n−2 s)表示部分关键水列夫指数函数米1米2,f和g是连续函数,(−Δ)年代分数拉普拉斯算符,| |。|| X是分数阶Hilbert Sobolev空间X (Ω)中的范数,F (X, v (X)) = vx, gx, (X)) G (τ) d τ, r1和r2是正常数,λ和γ是实参数。对于这个问题,我们通过适当的截断论证和Krasnoselskii引入的属理论,证明了有限多个解的存在性。我们还证明了这些解是充分正则的,并能逐点求解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions of systems involving fractional Kirchhoff-type equations with critical growth
. In this paper we are going to study existence and multiplicity of solutions of a system involving fractional Kirchhoff-type and critical growth of form where s ∈ ( 0 , 1 ) , n > 2 s , Ω ⊂ R n is a bounded and open set, 2 ∗ s = 2 n / ( n − 2 s ) denotes the fractional critical Sobolev exponent, the functions M 1 , M 2 , f and g are continuous functions, ( − Δ ) s is the fractional laplacian operator, || . || X is a norm in the fractional Hilbert Sobolev space X ( Ω ) , F ( x , v ( x )) = v x , G x , ( x )) g ( τ ) d τ , r 1 and r 2 are positive constants, λ and γ are real parameters. For this problem we prove the existence of in fi nitely many solutions, via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii. Also we show that these solutions are suf fi ciently regular and solve the problem pointwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信