广义Mycielski图的色拉姆齐数

Pub Date : 2023-01-01 DOI:10.7151/dmgt.2499
Claude Tardif
{"title":"广义Mycielski图的色拉姆齐数","authors":"Claude Tardif","doi":"10.7151/dmgt.2499","DOIUrl":null,"url":null,"abstract":". We revisit the Burr–Erd˝os–Lov´asz conjecture on chromatic Ramsey numbers. We show that it admits a proof based on the Lov´asz ϑ parame- ter in addition to the proof of Xuding Zhu based on the fractional chromatic number. However, there are no proofs based on topological lower bounds on chromatic numbers, because the chromatic Ramsey numbers of generalised Mycielski graphs are too large. We show that the 4-chromatic generalised Mycielski graphs other than K 4 all have chromatic Ramsey number 14, and that the n -chromatic generalised Mycielski graphs all have chromatic Ramsey number at least 2 n/ 4 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatic Ramsey numbers of generalised Mycielski graphs\",\"authors\":\"Claude Tardif\",\"doi\":\"10.7151/dmgt.2499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We revisit the Burr–Erd˝os–Lov´asz conjecture on chromatic Ramsey numbers. We show that it admits a proof based on the Lov´asz ϑ parame- ter in addition to the proof of Xuding Zhu based on the fractional chromatic number. However, there are no proofs based on topological lower bounds on chromatic numbers, because the chromatic Ramsey numbers of generalised Mycielski graphs are too large. We show that the 4-chromatic generalised Mycielski graphs other than K 4 all have chromatic Ramsey number 14, and that the n -chromatic generalised Mycielski graphs all have chromatic Ramsey number at least 2 n/ 4 .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。我们重新审视了色拉姆齐数的Burr-Erd“os-Lov”猜想。我们证明了除了朱旭定基于分数阶色数的证明外,它还允许一个基于Lov´asz φ参数的证明。然而,由于广义Mycielski图的色拉姆齐数太大,没有基于色数拓扑下界的证明。我们证明了除k4以外的4色广义Mycielski图都具有色Ramsey数14,并且n色广义Mycielski图都具有至少2 n/ 4的色Ramsey数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Chromatic Ramsey numbers of generalised Mycielski graphs
. We revisit the Burr–Erd˝os–Lov´asz conjecture on chromatic Ramsey numbers. We show that it admits a proof based on the Lov´asz ϑ parame- ter in addition to the proof of Xuding Zhu based on the fractional chromatic number. However, there are no proofs based on topological lower bounds on chromatic numbers, because the chromatic Ramsey numbers of generalised Mycielski graphs are too large. We show that the 4-chromatic generalised Mycielski graphs other than K 4 all have chromatic Ramsey number 14, and that the n -chromatic generalised Mycielski graphs all have chromatic Ramsey number at least 2 n/ 4 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信