无爪三次图中的半全数强迫

Pub Date : 2023-01-01 DOI:10.7151/dmgt.2501
Yijuan Liang, Jie Chen, Shou-Jun Xu
{"title":"无爪三次图中的半全数强迫","authors":"Yijuan Liang, Jie Chen, Shou-Jun Xu","doi":"10.7151/dmgt.2501","DOIUrl":null,"url":null,"abstract":"For an isolate-free graph G = ( V ( G ) , E ( G )), a set S ⊆ V ( G ) is called a semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and every vertex in S is within distance 2 of another vertex of S . The semitotal forcing number F t 2 ( G ) is the minimum cardinality of a semitotal forcing set in G . In this paper, we prove that if G (cid:54) = K 4 is a connected claw-free cubic graph of order n , then F t 2 ( G ) ≤ 38 n + 1. The graphs achieving equality in this bound are characterized, an infinite set of graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semitotal forcing in claw-free cubic graphs\",\"authors\":\"Yijuan Liang, Jie Chen, Shou-Jun Xu\",\"doi\":\"10.7151/dmgt.2501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an isolate-free graph G = ( V ( G ) , E ( G )), a set S ⊆ V ( G ) is called a semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and every vertex in S is within distance 2 of another vertex of S . The semitotal forcing number F t 2 ( G ) is the minimum cardinality of a semitotal forcing set in G . In this paper, we prove that if G (cid:54) = K 4 is a connected claw-free cubic graph of order n , then F t 2 ( G ) ≤ 38 n + 1. The graphs achieving equality in this bound are characterized, an infinite set of graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于无隔离图G = (V (G), E (G)),如果集合S是G的一个强迫集(或零强迫集),且S中的每个顶点与S的另一个顶点的距离在2以内,则称其为G的半强迫集。半衰期强迫数f2 (G)是G中半衰期强迫集的最小基数。本文证明了如果G (cid:54) = k4是一个n阶的连通无爪三次图,则F t 2 (G)≤38n + 1。在这个界内达到相等的图被表示为图的无限集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Semitotal forcing in claw-free cubic graphs
For an isolate-free graph G = ( V ( G ) , E ( G )), a set S ⊆ V ( G ) is called a semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and every vertex in S is within distance 2 of another vertex of S . The semitotal forcing number F t 2 ( G ) is the minimum cardinality of a semitotal forcing set in G . In this paper, we prove that if G (cid:54) = K 4 is a connected claw-free cubic graph of order n , then F t 2 ( G ) ≤ 38 n + 1. The graphs achieving equality in this bound are characterized, an infinite set of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信