Cracow滑坡脆弱性

Q4 Earth and Planetary Sciences
Sylwester Kamieniarz
{"title":"Cracow滑坡脆弱性","authors":"Sylwester Kamieniarz","doi":"10.7306/2022.24","DOIUrl":null,"url":null,"abstract":"Due to the differentiation of landslides in Kraków city area, an artificial neural network method (multilayer perceptron) was used to determine the landslide susceptibility (LS). The calculations were performed in the r.landslide module. The network learning was carried out on the basis of 8 thematic layers (slopes, slope exposure, absolute height, relative height, convergence index, surface lithology, sub-Quaternary lithology, distance from tectonic discontinuities). For modelling, 434 points representing landslides and the same number of pointsoflocationswithoutlandslideswereused.Amongthesetofpoints,70%wasallocatedtothetrainingphase, 15%tothevalidationphase,and15%tothephase.Inordertoassessthenetworkperformance,basedontheresults of the test phase, a confusion matrix was made. Approximately 22% of the city’s area is susceptible to landslide occurrence(LS>0.05).Itoverlapexistinglandslidesandcoverareaswheretheyhavenotoccurredyet.Thegreatestnumberofareas susceptibletolandslideoccurrenceislocatedindistrictsX(54%ofthedistrictarea)andVII(47%).Therearealsothemostsusceptible areas (LS > 0.95). The sensitivity analysis implemented in the module showed that among the thematic layers used for modelling the slopes, convergence index, distance from tectonic discontinuities and sub-Quaternary lithology have the greatest impact on the landslide susceptibility.","PeriodicalId":35787,"journal":{"name":"Przeglad Geologiczny","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Podatność osuwiskowa obszaru Krakowa\",\"authors\":\"Sylwester Kamieniarz\",\"doi\":\"10.7306/2022.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the differentiation of landslides in Kraków city area, an artificial neural network method (multilayer perceptron) was used to determine the landslide susceptibility (LS). The calculations were performed in the r.landslide module. The network learning was carried out on the basis of 8 thematic layers (slopes, slope exposure, absolute height, relative height, convergence index, surface lithology, sub-Quaternary lithology, distance from tectonic discontinuities). For modelling, 434 points representing landslides and the same number of pointsoflocationswithoutlandslideswereused.Amongthesetofpoints,70%wasallocatedtothetrainingphase, 15%tothevalidationphase,and15%tothephase.Inordertoassessthenetworkperformance,basedontheresults of the test phase, a confusion matrix was made. Approximately 22% of the city’s area is susceptible to landslide occurrence(LS>0.05).Itoverlapexistinglandslidesandcoverareaswheretheyhavenotoccurredyet.Thegreatestnumberofareas susceptibletolandslideoccurrenceislocatedindistrictsX(54%ofthedistrictarea)andVII(47%).Therearealsothemostsusceptible areas (LS > 0.95). The sensitivity analysis implemented in the module showed that among the thematic layers used for modelling the slopes, convergence index, distance from tectonic discontinuities and sub-Quaternary lithology have the greatest impact on the landslide susceptibility.\",\"PeriodicalId\":35787,\"journal\":{\"name\":\"Przeglad Geologiczny\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przeglad Geologiczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7306/2022.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przeglad Geologiczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7306/2022.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

针对Kraków城区滑坡的差异性,采用人工神经网络(多层感知器)方法确定滑坡敏感性(LS)。计算是在r.滑坡模块中进行的。基于8个主题层(坡度、坡面暴露、绝对高度、相对高度、收敛指数、地表岩性、亚第四纪岩性、与构造不连续面距离)进行网络学习。在建模中,434个点代表滑坡,同样数量的点代表没有滑坡的位置。wasallocatedtothetrainingphase Amongthesetofpoints, 70%, 15%, tothevalidationphase and15%tothephase。为了评估网络的性能,根据测试阶段的结果,制作了一个混淆矩阵。大约22%的城市区域容易发生滑坡(LS >.05)。它覆盖了现有的滑坡和尚未发生滑坡的地区。ofthedistrictarea Thegreatestnumberofareas susceptibletolandslideoccurrenceislocatedindistrictsX (54%) andVII(47%)。还有一些最易受影响的地区(LS > 0.95)。模型的敏感性分析结果表明,在坡面模拟的主题层中,收敛指数、构造不连续面距离和亚第四纪岩性对滑坡敏感性影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Podatność osuwiskowa obszaru Krakowa
Due to the differentiation of landslides in Kraków city area, an artificial neural network method (multilayer perceptron) was used to determine the landslide susceptibility (LS). The calculations were performed in the r.landslide module. The network learning was carried out on the basis of 8 thematic layers (slopes, slope exposure, absolute height, relative height, convergence index, surface lithology, sub-Quaternary lithology, distance from tectonic discontinuities). For modelling, 434 points representing landslides and the same number of pointsoflocationswithoutlandslideswereused.Amongthesetofpoints,70%wasallocatedtothetrainingphase, 15%tothevalidationphase,and15%tothephase.Inordertoassessthenetworkperformance,basedontheresults of the test phase, a confusion matrix was made. Approximately 22% of the city’s area is susceptible to landslide occurrence(LS>0.05).Itoverlapexistinglandslidesandcoverareaswheretheyhavenotoccurredyet.Thegreatestnumberofareas susceptibletolandslideoccurrenceislocatedindistrictsX(54%ofthedistrictarea)andVII(47%).Therearealsothemostsusceptible areas (LS > 0.95). The sensitivity analysis implemented in the module showed that among the thematic layers used for modelling the slopes, convergence index, distance from tectonic discontinuities and sub-Quaternary lithology have the greatest impact on the landslide susceptibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Przeglad Geologiczny
Przeglad Geologiczny Earth and Planetary Sciences-Geology
CiteScore
0.70
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信