基于时间推理的时间关系分类的叠加方法

Q4 Computer Science
N. Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka
{"title":"基于时间推理的时间关系分类的叠加方法","authors":"N. Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka","doi":"10.5715/JNLP.22.171","DOIUrl":null,"url":null,"abstract":"Traditional machine-learning-based approaches to temporal relation classification use only local features, i.e., those relating to a specific pair of temporal entities (events and temporal expressions), and thus fail to incorporate useful information that could be inferred from nearby entities. In this paper, we use timegraphs and stacked learning to perform temporal inference for classification in the temporal relation classification task. In our model, we predict a temporal relation by considering the consistency of possible relations between nearby entities. Performing 10-fold cross-validation on the Timebank corpus, we achieve an F1 score of 60.25% using a graph-based evaluation, which is 0.90 percentage points higher than that of the local approach, outperforming other proposed systems.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"54 1","pages":"171-196"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Stacking Approach to Temporal Relation Classification with Temporal Inference\",\"authors\":\"N. Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka\",\"doi\":\"10.5715/JNLP.22.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional machine-learning-based approaches to temporal relation classification use only local features, i.e., those relating to a specific pair of temporal entities (events and temporal expressions), and thus fail to incorporate useful information that could be inferred from nearby entities. In this paper, we use timegraphs and stacked learning to perform temporal inference for classification in the temporal relation classification task. In our model, we predict a temporal relation by considering the consistency of possible relations between nearby entities. Performing 10-fold cross-validation on the Timebank corpus, we achieve an F1 score of 60.25% using a graph-based evaluation, which is 0.90 percentage points higher than that of the local approach, outperforming other proposed systems.\",\"PeriodicalId\":16243,\"journal\":{\"name\":\"Journal of Information Processing\",\"volume\":\"54 1\",\"pages\":\"171-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5715/JNLP.22.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.22.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

摘要

传统的基于机器学习的时间关系分类方法只使用局部特征,即与特定的时间实体(事件和时间表达式)对相关的特征,因此无法包含可以从附近实体推断出的有用信息。在时间关系分类任务中,我们使用时间图和堆叠学习来进行时间推理进行分类。在我们的模型中,我们通过考虑附近实体之间可能关系的一致性来预测时间关系。在Timebank语料库上执行10倍交叉验证,我们使用基于图的评估获得了60.25%的F1分数,比本地方法高出0.90个百分点,优于其他提出的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stacking Approach to Temporal Relation Classification with Temporal Inference
Traditional machine-learning-based approaches to temporal relation classification use only local features, i.e., those relating to a specific pair of temporal entities (events and temporal expressions), and thus fail to incorporate useful information that could be inferred from nearby entities. In this paper, we use timegraphs and stacked learning to perform temporal inference for classification in the temporal relation classification task. In our model, we predict a temporal relation by considering the consistency of possible relations between nearby entities. Performing 10-fold cross-validation on the Timebank corpus, we achieve an F1 score of 60.25% using a graph-based evaluation, which is 0.90 percentage points higher than that of the local approach, outperforming other proposed systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信