生成依赖N-gram语言模型:无监督参数估计及应用

Q4 Computer Science
Chenchen Ding, Mikio Yamamoto
{"title":"生成依赖N-gram语言模型:无监督参数估计及应用","authors":"Chenchen Ding, Mikio Yamamoto","doi":"10.5715/JNLP.21.981","DOIUrl":null,"url":null,"abstract":"We design a language model based on a generative dependency structure for sentences. The parameter of the model is the probability of a dependency N-gram, which is composed of lexical words with four types of extra tag used to model the dependency relation and valence. We further propose an unsupervised expectation-maximization algorithm for parameter estimation, in which all possible dependency structures of a sentence are considered. As the algorithm is language-independent, it can be used on a raw corpus from any language, without any part-of-speech annotation, tree-bank or trained parser. We conducted experiments using four languages, i.e., English, German, Spanish and Japanese, to illustrate the applicability and the properties of the proposed approach. We further apply the proposed approach to a Chinese microblog data set to extract and investigate Internet-based, non-standard lexical dependency features of user-generated content.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"21 1","pages":"981-1009"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Generative Dependency N-gram Language Model: Unsupervised Parameter Estimation and Application\",\"authors\":\"Chenchen Ding, Mikio Yamamoto\",\"doi\":\"10.5715/JNLP.21.981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a language model based on a generative dependency structure for sentences. The parameter of the model is the probability of a dependency N-gram, which is composed of lexical words with four types of extra tag used to model the dependency relation and valence. We further propose an unsupervised expectation-maximization algorithm for parameter estimation, in which all possible dependency structures of a sentence are considered. As the algorithm is language-independent, it can be used on a raw corpus from any language, without any part-of-speech annotation, tree-bank or trained parser. We conducted experiments using four languages, i.e., English, German, Spanish and Japanese, to illustrate the applicability and the properties of the proposed approach. We further apply the proposed approach to a Chinese microblog data set to extract and investigate Internet-based, non-standard lexical dependency features of user-generated content.\",\"PeriodicalId\":16243,\"journal\":{\"name\":\"Journal of Information Processing\",\"volume\":\"21 1\",\"pages\":\"981-1009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5715/JNLP.21.981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.21.981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

我们设计了一个基于句子生成依赖结构的语言模型。该模型的参数是依赖N-gram的概率,该N-gram由词汇词和四种用于建模依赖关系和价的额外标记组成。我们进一步提出了一种无监督期望最大化的参数估计算法,该算法考虑了句子中所有可能的依赖结构。由于该算法与语言无关,因此可以在任何语言的原始语料库上使用,而不需要任何词性注释、树库或训练过的解析器。我们使用英语、德语、西班牙语和日语四种语言进行了实验,以说明所提出方法的适用性和特性。我们进一步将该方法应用于中文微博数据集,以提取和研究基于互联网的用户生成内容的非标准词汇依赖特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generative Dependency N-gram Language Model: Unsupervised Parameter Estimation and Application
We design a language model based on a generative dependency structure for sentences. The parameter of the model is the probability of a dependency N-gram, which is composed of lexical words with four types of extra tag used to model the dependency relation and valence. We further propose an unsupervised expectation-maximization algorithm for parameter estimation, in which all possible dependency structures of a sentence are considered. As the algorithm is language-independent, it can be used on a raw corpus from any language, without any part-of-speech annotation, tree-bank or trained parser. We conducted experiments using four languages, i.e., English, German, Spanish and Japanese, to illustrate the applicability and the properties of the proposed approach. We further apply the proposed approach to a Chinese microblog data set to extract and investigate Internet-based, non-standard lexical dependency features of user-generated content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信