Javan Ataide De Oliveira Junior, Edson Tavares de Camargo, Marcio Seiji Oyamada
{"title":"LoRa网络中的数据压缩:性能与能耗的折衷","authors":"Javan Ataide De Oliveira Junior, Edson Tavares de Camargo, Marcio Seiji Oyamada","doi":"10.5753/jisa.2023.3000","DOIUrl":null,"url":null,"abstract":"\n\n\nThe Internet of Things (IoT) end devices have major limitations related to hardware and energy autonomy. Generally, the highest energy consumption is related to communication, which accounts for up to 60% of consumption depending on the application. Among the strategies to optimize the energy consumed by communication, data compression methods are one of the most promising. However, most data compression algorithms are designed for personal computers and need to be adapted to the IoT context. This study aims to adapt classical algorithms, such as LZ77, LZ78, LZW, Huffman, and Arithmetic coding, and to analyse their performance and energy metrics in IoT end devices. The evaluation is performed in a device with an ESP32 processor and LoRa modulation. The study makes use of real datasets derived from two IoT applications. The results show compression rates close to 70%, a three-fold increase in the number of messages sent, and a reduction in energy consumption of 22%. An analytical model was also developed to estimate the gain in the battery life of the device using the adapted algorithms.\n\n\n","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":"14 1","pages":"95-106"},"PeriodicalIF":2.4000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption\",\"authors\":\"Javan Ataide De Oliveira Junior, Edson Tavares de Camargo, Marcio Seiji Oyamada\",\"doi\":\"10.5753/jisa.2023.3000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nThe Internet of Things (IoT) end devices have major limitations related to hardware and energy autonomy. Generally, the highest energy consumption is related to communication, which accounts for up to 60% of consumption depending on the application. Among the strategies to optimize the energy consumed by communication, data compression methods are one of the most promising. However, most data compression algorithms are designed for personal computers and need to be adapted to the IoT context. This study aims to adapt classical algorithms, such as LZ77, LZ78, LZW, Huffman, and Arithmetic coding, and to analyse their performance and energy metrics in IoT end devices. The evaluation is performed in a device with an ESP32 processor and LoRa modulation. The study makes use of real datasets derived from two IoT applications. The results show compression rates close to 70%, a three-fold increase in the number of messages sent, and a reduction in energy consumption of 22%. An analytical model was also developed to estimate the gain in the battery life of the device using the adapted algorithms.\\n\\n\\n\",\"PeriodicalId\":46467,\"journal\":{\"name\":\"Journal of Internet Services and Applications\",\"volume\":\"14 1\",\"pages\":\"95-106\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/jisa.2023.3000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jisa.2023.3000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption
The Internet of Things (IoT) end devices have major limitations related to hardware and energy autonomy. Generally, the highest energy consumption is related to communication, which accounts for up to 60% of consumption depending on the application. Among the strategies to optimize the energy consumed by communication, data compression methods are one of the most promising. However, most data compression algorithms are designed for personal computers and need to be adapted to the IoT context. This study aims to adapt classical algorithms, such as LZ77, LZ78, LZW, Huffman, and Arithmetic coding, and to analyse their performance and energy metrics in IoT end devices. The evaluation is performed in a device with an ESP32 processor and LoRa modulation. The study makes use of real datasets derived from two IoT applications. The results show compression rates close to 70%, a three-fold increase in the number of messages sent, and a reduction in energy consumption of 22%. An analytical model was also developed to estimate the gain in the battery life of the device using the adapted algorithms.