生物语言学与柏拉图主义:矛盾还是一致?

IF 0.6 0 LANGUAGE & LINGUISTICS
J. Watumull
{"title":"生物语言学与柏拉图主义:矛盾还是一致?","authors":"J. Watumull","doi":"10.5964/bioling.8969","DOIUrl":null,"url":null,"abstract":"It has been argued that language is a Platonic object, and therefore that a biolinguistic ontology is incoherent. In particular, the notion of language as a system of discrete infinity has been argued to be inconsistent with the assumption of a physical (finite) basis for language. These arguments are flawed. Here I demonstrate that biolinguistics and mathematical Platonism are not \nmutually exclusive and contradictory, but in fact mutually reinforcing and consilient in a coherent and compelling philosophy of language. This consilience is effected by Turing’s proof of the coherency of a finitely procedure generative of infinite sets.","PeriodicalId":54041,"journal":{"name":"Biolinguistics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2013-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Biolinguistics and Platonism: Contradictory or Consilient?\",\"authors\":\"J. Watumull\",\"doi\":\"10.5964/bioling.8969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been argued that language is a Platonic object, and therefore that a biolinguistic ontology is incoherent. In particular, the notion of language as a system of discrete infinity has been argued to be inconsistent with the assumption of a physical (finite) basis for language. These arguments are flawed. Here I demonstrate that biolinguistics and mathematical Platonism are not \\nmutually exclusive and contradictory, but in fact mutually reinforcing and consilient in a coherent and compelling philosophy of language. This consilience is effected by Turing’s proof of the coherency of a finitely procedure generative of infinite sets.\",\"PeriodicalId\":54041,\"journal\":{\"name\":\"Biolinguistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2013-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biolinguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5964/bioling.8969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biolinguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/bioling.8969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 7

摘要

有人认为语言是柏拉图式的客体,因此生物语言学的本体论是不连贯的。特别是,语言作为一个离散的无穷系统的概念被认为与语言的物理(有限)基础的假设不一致。这些论点是有缺陷的。在这里,我证明了生物语言学和数学柏拉图主义并不是相互排斥和矛盾的,事实上,在一个连贯而引人注目的语言哲学中,它们是相互加强和协调的。这种一致性是通过图灵对无限集的有限过程生成的相干性的证明来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biolinguistics and Platonism: Contradictory or Consilient?
It has been argued that language is a Platonic object, and therefore that a biolinguistic ontology is incoherent. In particular, the notion of language as a system of discrete infinity has been argued to be inconsistent with the assumption of a physical (finite) basis for language. These arguments are flawed. Here I demonstrate that biolinguistics and mathematical Platonism are not mutually exclusive and contradictory, but in fact mutually reinforcing and consilient in a coherent and compelling philosophy of language. This consilience is effected by Turing’s proof of the coherency of a finitely procedure generative of infinite sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biolinguistics
Biolinguistics LANGUAGE & LINGUISTICS-
CiteScore
1.50
自引率
0.00%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信