{"title":"基于深度学习的离线Gurmukhi手写字符和数字识别模型","authors":"M. K. Mahto, K. Bhatia, R. Sharma","doi":"10.5565/rev/elcvia.1282","DOIUrl":null,"url":null,"abstract":"Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition\",\"authors\":\"M. K. Mahto, K. Bhatia, R. Sharma\",\"doi\":\"10.5565/rev/elcvia.1282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/elcvia.1282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition
Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals.