Mamdouh M. Shawki, Marwa M. Eltarahony, Maisa E. Moustafa
{"title":"氧化钛纳米颗粒和低直流电流对蜡样芽孢杆菌和铜绿假单胞菌生物膜扩散影响的比较研究","authors":"Mamdouh M. Shawki, Marwa M. Eltarahony, Maisa E. Moustafa","doi":"10.4279/pip.130005","DOIUrl":null,"url":null,"abstract":"Bacteria growing in biofilms cause a wide range of environmental, industrial and public health risks. Because biofilm bacteria are very resistant to antibiotics, there is an urgent need in medicine and industry to develop new approaches to eliminating bacterial biofilms. One strategy for controlling these biofilms is to generate an antibiofilm substance locally at the attachment surface. Direct electric current (DC) and nanoparticles (NPs) of metal oxides have outstanding antimicrobial properties. In this study we evaluated the effect of titanium oxide nanoparticle (TiO$_2$-NP) concentrations from 5 to 160 $\\mu$g/mL on Bacillus cereus and Pseudomonas aeruginosa biofilms, and compared this with the effect of a 9 V, 6 mA DC electric field for 5, 10 and 15 min. TiO$_2$-NPs were characterized using transmission and scanning electron microscopes, X-ray diffraction and FTIR. They exhibited an average size of 22-34 nm. The TiO$_2$-NP concentrations that attained LD50 were $104 \\pm 4$ $\\mu$g/mL and $63 \\pm 3$ $\\mu$g/mL for B. cereus and P. aeruginosa, respectively. The eradication percentages obtained by DC at 5, 10, and 15 min exposure were 21%, 29%, and 33% respectively for B. cereus and 30%, 39%, and 44% respectively for P. aeruginosa. Biofilm disintegration was verified by exopolysaccharide, protein content and cell surface hydrophobicity assessment, as well as scanning electron microscopy. These data were correlated with the reactive oxygen species produced. The results indicated that both DC and TiO$_2$-NPs have a lethal effect on these bacterial biofilms, and that the DC conditions used affect the biofilms in a similar way to TiO$_2$-NPs at concentrations of 20-40 $\\mu$g/mL.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The impact of titanium oxide nanoparticles and low direct electric current on biofilm dispersal of $Bacillus~cereus$ and $Pseudomonas~aeruginosa$: A comparative study\",\"authors\":\"Mamdouh M. Shawki, Marwa M. Eltarahony, Maisa E. Moustafa\",\"doi\":\"10.4279/pip.130005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria growing in biofilms cause a wide range of environmental, industrial and public health risks. Because biofilm bacteria are very resistant to antibiotics, there is an urgent need in medicine and industry to develop new approaches to eliminating bacterial biofilms. One strategy for controlling these biofilms is to generate an antibiofilm substance locally at the attachment surface. Direct electric current (DC) and nanoparticles (NPs) of metal oxides have outstanding antimicrobial properties. In this study we evaluated the effect of titanium oxide nanoparticle (TiO$_2$-NP) concentrations from 5 to 160 $\\\\mu$g/mL on Bacillus cereus and Pseudomonas aeruginosa biofilms, and compared this with the effect of a 9 V, 6 mA DC electric field for 5, 10 and 15 min. TiO$_2$-NPs were characterized using transmission and scanning electron microscopes, X-ray diffraction and FTIR. They exhibited an average size of 22-34 nm. The TiO$_2$-NP concentrations that attained LD50 were $104 \\\\pm 4$ $\\\\mu$g/mL and $63 \\\\pm 3$ $\\\\mu$g/mL for B. cereus and P. aeruginosa, respectively. The eradication percentages obtained by DC at 5, 10, and 15 min exposure were 21%, 29%, and 33% respectively for B. cereus and 30%, 39%, and 44% respectively for P. aeruginosa. Biofilm disintegration was verified by exopolysaccharide, protein content and cell surface hydrophobicity assessment, as well as scanning electron microscopy. These data were correlated with the reactive oxygen species produced. The results indicated that both DC and TiO$_2$-NPs have a lethal effect on these bacterial biofilms, and that the DC conditions used affect the biofilms in a similar way to TiO$_2$-NPs at concentrations of 20-40 $\\\\mu$g/mL.\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.130005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.130005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The impact of titanium oxide nanoparticles and low direct electric current on biofilm dispersal of $Bacillus~cereus$ and $Pseudomonas~aeruginosa$: A comparative study
Bacteria growing in biofilms cause a wide range of environmental, industrial and public health risks. Because biofilm bacteria are very resistant to antibiotics, there is an urgent need in medicine and industry to develop new approaches to eliminating bacterial biofilms. One strategy for controlling these biofilms is to generate an antibiofilm substance locally at the attachment surface. Direct electric current (DC) and nanoparticles (NPs) of metal oxides have outstanding antimicrobial properties. In this study we evaluated the effect of titanium oxide nanoparticle (TiO$_2$-NP) concentrations from 5 to 160 $\mu$g/mL on Bacillus cereus and Pseudomonas aeruginosa biofilms, and compared this with the effect of a 9 V, 6 mA DC electric field for 5, 10 and 15 min. TiO$_2$-NPs were characterized using transmission and scanning electron microscopes, X-ray diffraction and FTIR. They exhibited an average size of 22-34 nm. The TiO$_2$-NP concentrations that attained LD50 were $104 \pm 4$ $\mu$g/mL and $63 \pm 3$ $\mu$g/mL for B. cereus and P. aeruginosa, respectively. The eradication percentages obtained by DC at 5, 10, and 15 min exposure were 21%, 29%, and 33% respectively for B. cereus and 30%, 39%, and 44% respectively for P. aeruginosa. Biofilm disintegration was verified by exopolysaccharide, protein content and cell surface hydrophobicity assessment, as well as scanning electron microscopy. These data were correlated with the reactive oxygen species produced. The results indicated that both DC and TiO$_2$-NPs have a lethal effect on these bacterial biofilms, and that the DC conditions used affect the biofilms in a similar way to TiO$_2$-NPs at concentrations of 20-40 $\mu$g/mL.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.