{"title":"miR-34a表达通过靶向Bcl-2和CDK4/6信号通路对肺腺癌细胞放射敏感性的调节作用","authors":"Xue Chen, C. Yin, Qingfen Liu, Jian-xiang Liu","doi":"10.4236/jct.2022.124015","DOIUrl":null,"url":null,"abstract":"Objective: Radiotherapy has been widely used to treat lung cancer. However, non-small lung cancer cells are insensitive to radiation, diminishing their radiotherapy effects. Although the radiosensitivity of the non-small lung cancer cells was reported to be enhanced through regulating miR-34a, the regulation effects of miR-34a expression on radiosensitivity of lung adenocarcinoma cells through target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax have not been systematically investigated. Methods: In this study, we investigated the effect of miR-34a expression on the Bcl-2, CDK4, and CDK6 pathways in lung adenocarcinoma cells, to provide new insights into the sensitization treatment of lung cancer. We first studied the effect of miR-34a expression on H1299 and A549 cell activity. Then to investigate the mechanisms of radiosensitivity, we focused on apoptosis, cell cycle, and target genes. Results: We find that overexpression of miR-34a in lung adenocarcinoma cells inhibits cell activity, and improves radiosensitivity. Specifically, overexpression of miR-34a suppresses the expression of target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax, which leads to cell cycle arrest and promotes apoptosis of lung adenocarcinoma cells. Conclusions: Overall, our results demonstrate that the overexpression of miR-34a enhances the radiosensitivity of lung adenocarcinoma cells, indicating that miR-34a is a sensitizer for lung adenocarcinoma radiotherapy.","PeriodicalId":66197,"journal":{"name":"癌症治疗(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regulation Effect of miR-34a Expression on Radiosensitivity of Lung Adenocarcinoma Cells by Targeting Bcl-2 and CDK4/6 Signaling Pathways\",\"authors\":\"Xue Chen, C. Yin, Qingfen Liu, Jian-xiang Liu\",\"doi\":\"10.4236/jct.2022.124015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Radiotherapy has been widely used to treat lung cancer. However, non-small lung cancer cells are insensitive to radiation, diminishing their radiotherapy effects. Although the radiosensitivity of the non-small lung cancer cells was reported to be enhanced through regulating miR-34a, the regulation effects of miR-34a expression on radiosensitivity of lung adenocarcinoma cells through target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax have not been systematically investigated. Methods: In this study, we investigated the effect of miR-34a expression on the Bcl-2, CDK4, and CDK6 pathways in lung adenocarcinoma cells, to provide new insights into the sensitization treatment of lung cancer. We first studied the effect of miR-34a expression on H1299 and A549 cell activity. Then to investigate the mechanisms of radiosensitivity, we focused on apoptosis, cell cycle, and target genes. Results: We find that overexpression of miR-34a in lung adenocarcinoma cells inhibits cell activity, and improves radiosensitivity. Specifically, overexpression of miR-34a suppresses the expression of target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax, which leads to cell cycle arrest and promotes apoptosis of lung adenocarcinoma cells. Conclusions: Overall, our results demonstrate that the overexpression of miR-34a enhances the radiosensitivity of lung adenocarcinoma cells, indicating that miR-34a is a sensitizer for lung adenocarcinoma radiotherapy.\",\"PeriodicalId\":66197,\"journal\":{\"name\":\"癌症治疗(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症治疗(英文)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4236/jct.2022.124015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症治疗(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4236/jct.2022.124015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regulation Effect of miR-34a Expression on Radiosensitivity of Lung Adenocarcinoma Cells by Targeting Bcl-2 and CDK4/6 Signaling Pathways
Objective: Radiotherapy has been widely used to treat lung cancer. However, non-small lung cancer cells are insensitive to radiation, diminishing their radiotherapy effects. Although the radiosensitivity of the non-small lung cancer cells was reported to be enhanced through regulating miR-34a, the regulation effects of miR-34a expression on radiosensitivity of lung adenocarcinoma cells through target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax have not been systematically investigated. Methods: In this study, we investigated the effect of miR-34a expression on the Bcl-2, CDK4, and CDK6 pathways in lung adenocarcinoma cells, to provide new insights into the sensitization treatment of lung cancer. We first studied the effect of miR-34a expression on H1299 and A549 cell activity. Then to investigate the mechanisms of radiosensitivity, we focused on apoptosis, cell cycle, and target genes. Results: We find that overexpression of miR-34a in lung adenocarcinoma cells inhibits cell activity, and improves radiosensitivity. Specifically, overexpression of miR-34a suppresses the expression of target genes CDK4, CDK6, CyclinD1, and Bcl-2/Bax, which leads to cell cycle arrest and promotes apoptosis of lung adenocarcinoma cells. Conclusions: Overall, our results demonstrate that the overexpression of miR-34a enhances the radiosensitivity of lung adenocarcinoma cells, indicating that miR-34a is a sensitizer for lung adenocarcinoma radiotherapy.