连续可约性:函数与关系

IF 0.2 4区 数学 Q4 LOGIC
R. Camerlo
{"title":"连续可约性:函数与关系","authors":"R. Camerlo","doi":"10.4467/20842589rm.19.002.10650","DOIUrl":null,"url":null,"abstract":"It is proved that the Tang-Pequignot reducibility (or reducibility by relatively continuous relations) on a second countable, T0 space X either coincides with the Wadge reducibility for the given topology, or there is no topology on X that can turn it into Wadge reducibility.","PeriodicalId":48992,"journal":{"name":"Reports on Mathematical Logic","volume":"54 1","pages":"45-63"},"PeriodicalIF":0.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Continuous reducibility: functions versus relations\",\"authors\":\"R. Camerlo\",\"doi\":\"10.4467/20842589rm.19.002.10650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved that the Tang-Pequignot reducibility (or reducibility by relatively continuous relations) on a second countable, T0 space X either coincides with the Wadge reducibility for the given topology, or there is no topology on X that can turn it into Wadge reducibility.\",\"PeriodicalId\":48992,\"journal\":{\"name\":\"Reports on Mathematical Logic\",\"volume\":\"54 1\",\"pages\":\"45-63\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4467/20842589rm.19.002.10650\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4467/20842589rm.19.002.10650","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

证明了第二可数空间T0 X上的Tang-Pequignot可约性(或相对连续关系的可约性)与给定拓扑的Wadge可约性相一致,或者X上不存在可以使其变为Wadge可约性的拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous reducibility: functions versus relations
It is proved that the Tang-Pequignot reducibility (or reducibility by relatively continuous relations) on a second countable, T0 space X either coincides with the Wadge reducibility for the given topology, or there is no topology on X that can turn it into Wadge reducibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Logic
Reports on Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: Reports on Mathematical Logic is a journal aimed at publishing quality research papers on mathematical logic and foundations of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信