无线传感器网络的轻量化能耗模型与评价

A. Richardson, J. Rendall, Yong-Hsun Lai
{"title":"无线传感器网络的轻量化能耗模型与评价","authors":"A. Richardson, J. Rendall, Yong-Hsun Lai","doi":"10.4172/2090-4886.1000137","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks are comprised of low power devices with fixed energy stores. They often require long term operation for successful deployment so it is important to efficiently manage and track their energy usage. To effectively accomplish this across distributed networks requires methods which have low energy cost with minimal error. In this paper we present a straightforward model for energy consumption in wireless sensor networks which is light-weight and accurate. The model has been applied to a wireless sensor network developed by the Queen's University MEMs lab and is evaluated with a custom testbed. Through testing, the model is exposed to realistic disturbances of communication loss, battery effects and variable voltage supplies. It was shown that with 99% packet reception rates in the network, the model accurately estimates end node energy consumption with less than 5% error. These results were demonstrated across varying data rates, battery supply capacities, and runtimes up to full network lifetime.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2090-4886.1000137","citationCount":"2","resultStr":"{\"title\":\"Light-Weight Energy Consumption Model and Evaluation for WirelessSensor Networks\",\"authors\":\"A. Richardson, J. Rendall, Yong-Hsun Lai\",\"doi\":\"10.4172/2090-4886.1000137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks are comprised of low power devices with fixed energy stores. They often require long term operation for successful deployment so it is important to efficiently manage and track their energy usage. To effectively accomplish this across distributed networks requires methods which have low energy cost with minimal error. In this paper we present a straightforward model for energy consumption in wireless sensor networks which is light-weight and accurate. The model has been applied to a wireless sensor network developed by the Queen's University MEMs lab and is evaluated with a custom testbed. Through testing, the model is exposed to realistic disturbances of communication loss, battery effects and variable voltage supplies. It was shown that with 99% packet reception rates in the network, the model accurately estimates end node energy consumption with less than 5% error. These results were demonstrated across varying data rates, battery supply capacities, and runtimes up to full network lifetime.\",\"PeriodicalId\":91517,\"journal\":{\"name\":\"International journal of sensor networks and data communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2090-4886.1000137\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sensor networks and data communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-4886.1000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-4886.1000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无线传感器网络由具有固定能量存储的低功耗器件组成。它们通常需要长期运行才能成功部署,因此有效管理和跟踪其能源使用情况非常重要。要在分布式网络中有效地实现这一目标,需要能量消耗低、误差最小的方法。本文提出了一种简单、轻量级、准确的无线传感器网络能耗模型。该模型已应用于女王大学MEMs实验室开发的无线传感器网络,并在定制测试平台上进行了评估。通过测试,该模型暴露在通信损耗、电池效应和变压电源等现实干扰下。结果表明,在网络中数据包接收率为99%的情况下,该模型能够准确估计终端节点能耗,误差小于5%。这些结果在不同的数据速率、电池供电容量和运行时间下进行了演示,直至整个网络寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-Weight Energy Consumption Model and Evaluation for WirelessSensor Networks
Wireless sensor networks are comprised of low power devices with fixed energy stores. They often require long term operation for successful deployment so it is important to efficiently manage and track their energy usage. To effectively accomplish this across distributed networks requires methods which have low energy cost with minimal error. In this paper we present a straightforward model for energy consumption in wireless sensor networks which is light-weight and accurate. The model has been applied to a wireless sensor network developed by the Queen's University MEMs lab and is evaluated with a custom testbed. Through testing, the model is exposed to realistic disturbances of communication loss, battery effects and variable voltage supplies. It was shown that with 99% packet reception rates in the network, the model accurately estimates end node energy consumption with less than 5% error. These results were demonstrated across varying data rates, battery supply capacities, and runtimes up to full network lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信