基于个人心电信号的数据加密与传输

Ching-Kun Chen, Chun-Liang Lin, Shyan-Lung Lin, C. Chiang
{"title":"基于个人心电信号的数据加密与传输","authors":"Ching-Kun Chen, Chun-Liang Lin, Shyan-Lung Lin, C. Chiang","doi":"10.4172/2090-4886.1000124","DOIUrl":null,"url":null,"abstract":"ECG signal vary from person to person, making it difficult to be imitated and duplicated. Biometric identification based on ECG is therefore a useful application based on this feature. Synchronization of chaotic systems provides a rich mechanism which is noise-like and virtually impossible to guess or predict. This study intends to combine our previously proposed information encryption/decryption system with chaotic synchronization circuits to create private key masking. To implement the proposed secure communication system, a pair of Lorenz-based synchronized circuits is developed by using operational amplifiers, resistors, capacitors and multipliers. The verification presented involves numerical simulation and hardware implementation to demonstrate feasibility of the proposed method. High quality randomness in ECG signals results in a widely expanded key space, making it an ideal key generator for personalized data encryption. The experiments demonstrate the use of this approach in encrypting texts and images via secure communications.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2090-4886.1000124","citationCount":"7","resultStr":"{\"title\":\"Data Encryption and Transmission Based on Personal ECG Signals\",\"authors\":\"Ching-Kun Chen, Chun-Liang Lin, Shyan-Lung Lin, C. Chiang\",\"doi\":\"10.4172/2090-4886.1000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ECG signal vary from person to person, making it difficult to be imitated and duplicated. Biometric identification based on ECG is therefore a useful application based on this feature. Synchronization of chaotic systems provides a rich mechanism which is noise-like and virtually impossible to guess or predict. This study intends to combine our previously proposed information encryption/decryption system with chaotic synchronization circuits to create private key masking. To implement the proposed secure communication system, a pair of Lorenz-based synchronized circuits is developed by using operational amplifiers, resistors, capacitors and multipliers. The verification presented involves numerical simulation and hardware implementation to demonstrate feasibility of the proposed method. High quality randomness in ECG signals results in a widely expanded key space, making it an ideal key generator for personalized data encryption. The experiments demonstrate the use of this approach in encrypting texts and images via secure communications.\",\"PeriodicalId\":91517,\"journal\":{\"name\":\"International journal of sensor networks and data communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2090-4886.1000124\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sensor networks and data communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-4886.1000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-4886.1000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

心电信号因人而异,难以被模仿和复制。因此,基于心电的生物特征识别是基于这一特征的一种有用的应用。混沌系统的同步提供了一种丰富的机制,它是类噪声的,几乎不可能猜测或预测。本研究拟将我们先前提出的资讯加解密系统与混沌同步电路相结合,以建立私钥掩蔽。为了实现所提出的安全通信系统,采用运算放大器、电阻、电容和乘法器开发了一对基于洛伦兹的同步电路。通过数值仿真和硬件实现验证了该方法的可行性。心电信号的高质量随机性使其具有广泛的密钥空间,是个性化数据加密的理想密钥发生器。实验证明了该方法在通过安全通信加密文本和图像中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Encryption and Transmission Based on Personal ECG Signals
ECG signal vary from person to person, making it difficult to be imitated and duplicated. Biometric identification based on ECG is therefore a useful application based on this feature. Synchronization of chaotic systems provides a rich mechanism which is noise-like and virtually impossible to guess or predict. This study intends to combine our previously proposed information encryption/decryption system with chaotic synchronization circuits to create private key masking. To implement the proposed secure communication system, a pair of Lorenz-based synchronized circuits is developed by using operational amplifiers, resistors, capacitors and multipliers. The verification presented involves numerical simulation and hardware implementation to demonstrate feasibility of the proposed method. High quality randomness in ECG signals results in a widely expanded key space, making it an ideal key generator for personalized data encryption. The experiments demonstrate the use of this approach in encrypting texts and images via secure communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信