基于非参数平滑的连续时间随机噪声环境下的强化学习

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenyang Jiang, Bowen Hu, Yazhen Wang, Shang Wu
{"title":"基于非参数平滑的连续时间随机噪声环境下的强化学习","authors":"Chenyang Jiang, Bowen Hu, Yazhen Wang, Shang Wu","doi":"10.5705/ss.202022.0407","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning via Nonparametric Smoothing in a Continuous-Time Stochastic Setting with Noisy Data\",\"authors\":\"Chenyang Jiang, Bowen Hu, Yazhen Wang, Shang Wu\",\"doi\":\"10.5705/ss.202022.0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0407\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

强化学习主要是针对离散时间马尔可夫决策过程开发的。本文建立了一种新的基于时间差分和非参数平滑的学习方法来解决具有噪声数据的连续时间设置中的强化学习问题,其中真正的学习模型由常微分方程控制,数据样本由随机微分方程生成,该随机微分方程被认为是常微分方程的带噪声版本。针对确定性模型开发的连续时间时间差学习是不稳定的,当应用于随机模型产生的数据时实际上是发散的。此外,由于观测数据中存在测量误差或噪声,需要一种新的强化学习框架来处理带有噪声数据的学习问题。我们表明,所提出的学习方法对于学习基于随机微分方程控制的随机模型产生的噪声数据的确定性函数具有鲁棒性。建立了该方法的渐近理论,并对摆强化学习问题进行了数值研究,验证了该方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning via Nonparametric Smoothing in a Continuous-Time Stochastic Setting with Noisy Data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信