大数据下多项式Logistic模型的最优子抽样

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Zhiqiang Ye, Jun Yu, Mingyao Ai
{"title":"大数据下多项式Logistic模型的最优子抽样","authors":"Zhiqiang Ye, Jun Yu, Mingyao Ai","doi":"10.5705/ss.202022.0277","DOIUrl":null,"url":null,"abstract":"This section is dedicated to presenting the explicit forms of πij(β)’s and their derivatives, which are important parts in searching the maximum likelihood estimator and in the theoretical proofs. The categorical probability πij(β) for Models (2.1)-(2.4) can be calculated directly, and the first derivative of πij(β) with respect to β can be gotten through ∂πij(β) ∂β = πij(β) ∂ log πij(β) ∂β , (S1.1)","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Subsampling for Multinomial Logistic Models With Big Data\",\"authors\":\"Zhiqiang Ye, Jun Yu, Mingyao Ai\",\"doi\":\"10.5705/ss.202022.0277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This section is dedicated to presenting the explicit forms of πij(β)’s and their derivatives, which are important parts in searching the maximum likelihood estimator and in the theoretical proofs. The categorical probability πij(β) for Models (2.1)-(2.4) can be calculated directly, and the first derivative of πij(β) with respect to β can be gotten through ∂πij(β) ∂β = πij(β) ∂ log πij(β) ∂β , (S1.1)\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0277\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0277","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本节给出π (β)及其导数的显式形式,π (β)及其导数是搜索极大似然估计量和理论证明的重要组成部分。可以直接计算出模型(2.1)-(2.4)的分类概率πij(β),通过∂πij(β)∂β = πij(β)∂log πij(β)∂β, (S1.1)得到πij(β)对β的一阶导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Subsampling for Multinomial Logistic Models With Big Data
This section is dedicated to presenting the explicit forms of πij(β)’s and their derivatives, which are important parts in searching the maximum likelihood estimator and in the theoretical proofs. The categorical probability πij(β) for Models (2.1)-(2.4) can be calculated directly, and the first derivative of πij(β) with respect to β can be gotten through ∂πij(β) ∂β = πij(β) ∂ log πij(β) ∂β , (S1.1)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信