最大l1距离拉丁超立方体设计的一种构造方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu
{"title":"最大l1距离拉丁超立方体设计的一种构造方法","authors":"Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu","doi":"10.5705/ss.202022.0263","DOIUrl":null,"url":null,"abstract":"A Construction Method for Maximin L1-Distance Latin Hypercube Designs","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction Method for Maximin L1-Distance Latin Hypercube Designs\",\"authors\":\"Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu\",\"doi\":\"10.5705/ss.202022.0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Construction Method for Maximin L1-Distance Latin Hypercube Designs\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0263\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0263","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最大距离设计是一种空间填充设计,在计算机实验中应用广泛。为了构建这样的设计,已经做了大量的工作。即便如此,构建具有较大行和列尺寸的最大距离设计仍然具有挑战性。在本文中,我们提出了一种生成最大l1距离拉丁超立方体设计的理论构造方法,其运行尺寸接近列数或列数的一半。理论结果表明,部分构造的设计是最大l1距离和等距设计,即它们的成对l1距离都相等,它们也是均匀投影设计;而另一些则在最大l1距离准则下渐近最优。此外,该方法可以有效地构造高维拉丁超立方体设计,并在最大l1距离准则下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Construction Method for Maximin L1-Distance Latin Hypercube Designs
A Construction Method for Maximin L1-Distance Latin Hypercube Designs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信