基于最小脊协方差行列式估计的离群点检测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chikun Li, B. Jin, Yuehua Wu
{"title":"基于最小脊协方差行列式估计的离群点检测","authors":"Chikun Li, B. Jin, Yuehua Wu","doi":"10.5705/ss.202022.0142","DOIUrl":null,"url":null,"abstract":": In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outlier Detection via a Minimum Ridge Covariance Determinant Estimator\",\"authors\":\"Chikun Li, B. Jin, Yuehua Wu\",\"doi\":\"10.5705/ss.202022.0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0142\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0142","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于高击穿最小脊协方差行列式估计的离群值检测方法,该方法对大p/n场景特别有用。通过应用所谓的集中步骤,在排除潜在的异常值后,从观测值的子集中获得估计量。在一定的矩条件下,我们研究了与所提估计量相关的修正马氏距离的渐近分布,并得到了一个用于离群值识别的理论截断值。我们还通过增加一步重加权过程来提高离群值检测能力。最后,我们通过仿真和实际数据分析来验证所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier Detection via a Minimum Ridge Covariance Determinant Estimator
: In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信