函数数据非线性降维及其在聚类中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruoxu Tan, Yiming Zang, G. Yin
{"title":"函数数据非线性降维及其在聚类中的应用","authors":"Ruoxu Tan, Yiming Zang, G. Yin","doi":"10.5705/ss.202021.0393","DOIUrl":null,"url":null,"abstract":"Nonlinear dimension reduction for functional data with application to clustering","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dimension reduction for functional data with application to clustering\",\"authors\":\"Ruoxu Tan, Yiming Zang, G. Yin\",\"doi\":\"10.5705/ss.202021.0393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear dimension reduction for functional data with application to clustering\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202021.0393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

功能数据通常具有非线性结构,例如相位变化,因此线性降维技术可能无效。基于假设数据位于一个未知的带有噪声的流形上,研究了函数数据的非线性降维问题。我们将最近开发的用于高维数据的流形学习方法推广到我们的环境中,并在考虑噪声的情况下推导出渐近收敛结果。基于综合算例的结果往往比传统的功能等高线方法产生更精确的测地线距离估计。我们进一步开发了一种基于流形学习结果的聚类策略,并证明如果数据位于弯曲流形上,我们的方法优于其他方法。给出了两个实际数据示例来说明。1.中国统计:预印本doi:10.5705/ss.202021.0393
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dimension reduction for functional data with application to clustering
Nonlinear dimension reduction for functional data with application to clustering
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信