有测量误差的部分函数线性量回归。

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Mengli Zhang, Lan Xue, Carmen D Tekwe, Yang Bai, Annie Qu
{"title":"有测量误差的部分函数线性量回归。","authors":"Mengli Zhang, Lan Xue, Carmen D Tekwe, Yang Bai, Annie Qu","doi":"10.5705/ss.202021.0246","DOIUrl":null,"url":null,"abstract":"<p><p>Ignoring measurement errors in conventional regression analyses can lead to biased estimation and inference results. Reducing such bias is challenging when the error-prone covariate is a functional curve. In this paper, we propose a new corrected loss function for a partially functional linear quantile model with function-valued measurement errors. We establish the asymptotic properties of both the functional coefficient and the parametric coefficient estimators. We also demonstrate the finite-sample performance of the proposed method using simulation studies, and illustrate its advantages by applying it to data from a children obesity study.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":"2257-2280"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346807/pdf/","citationCount":"0","resultStr":"{\"title\":\"PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS.\",\"authors\":\"Mengli Zhang, Lan Xue, Carmen D Tekwe, Yang Bai, Annie Qu\",\"doi\":\"10.5705/ss.202021.0246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ignoring measurement errors in conventional regression analyses can lead to biased estimation and inference results. Reducing such bias is challenging when the error-prone covariate is a functional curve. In this paper, we propose a new corrected loss function for a partially functional linear quantile model with function-valued measurement errors. We establish the asymptotic properties of both the functional coefficient and the parametric coefficient estimators. We also demonstrate the finite-sample performance of the proposed method using simulation studies, and illustrate its advantages by applying it to data from a children obesity study.</p>\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"1 1\",\"pages\":\"2257-2280\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202021.0246\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在传统回归分析中忽略测量误差会导致估计和推断结果出现偏差。当容易产生误差的协变量是函数曲线时,减少这种偏差具有挑战性。在本文中,我们为具有函数值测量误差的部分函数线性量化模型提出了一种新的修正损失函数。我们建立了函数系数估计器和参数系数估计器的渐近特性。我们还通过模拟研究证明了所提方法的有限样本性能,并将其应用于一项儿童肥胖症研究的数据中,从而说明了该方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS.

Ignoring measurement errors in conventional regression analyses can lead to biased estimation and inference results. Reducing such bias is challenging when the error-prone covariate is a functional curve. In this paper, we propose a new corrected loss function for a partially functional linear quantile model with function-valued measurement errors. We establish the asymptotic properties of both the functional coefficient and the parametric coefficient estimators. We also demonstrate the finite-sample performance of the proposed method using simulation studies, and illustrate its advantages by applying it to data from a children obesity study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信