{"title":"基于马氏距离的自适应随机化","authors":"Yichen Qin, Y. Li, Wei Ma, Haoyu Yang, F. Hu","doi":"10.5705/ss.202020.0440","DOIUrl":null,"url":null,"abstract":": In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Randomization via Mahalanobis Distance\",\"authors\":\"Yichen Qin, Y. Li, Wei Ma, Haoyu Yang, F. Hu\",\"doi\":\"10.5705/ss.202020.0440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0440\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
: In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.