高斯空间过程的复合似然估计效率研究

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
N. Chua, Francis K. C. Hui, A. Welsh
{"title":"高斯空间过程的复合似然估计效率研究","authors":"N. Chua, Francis K. C. Hui, A. Welsh","doi":"10.5705/ss.202020.0311","DOIUrl":null,"url":null,"abstract":"the Efficiency of Composite Likelihood","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes\",\"authors\":\"N. Chua, Francis K. C. Hui, A. Welsh\",\"doi\":\"10.5705/ss.202020.0311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the Efficiency of Composite Likelihood\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0311\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0311","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

最大复合似然估计是标准最大似然估计的一种有吸引力且常用的替代方法,标准最大似然估计通常涉及牺牲统计效率以提高计算效率。这种统计效率可以通过评估最大复合似然估计量的三明治信息矩阵来量化,然后将其与最大似然估计量的类似Fisher信息矩阵进行比较。本文导出了一维指数协方差高斯过程的各种极大复合似然估计的渐近相对效率的新的封闭表达式。这些表达式基于一种抽样方案,该方案允许在三种常见的空间渐近框架下进行分析:扩展域、填充和混合。我们的结果证明了复合似然的选择如何影响估计的效率和一致性,特别是对于填充和混合框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes
the Efficiency of Composite Likelihood
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信