数学知识与现象学的起源

IF 0.3 3区 哲学 0 PHILOSOPHY
Gabriele Baratelli
{"title":"数学知识与现象学的起源","authors":"Gabriele Baratelli","doi":"10.5840/studphaen20212113","DOIUrl":null,"url":null,"abstract":"The paper is divided into two parts. In the first one, I set forth a hypothesis to explain the failure of Husserl’s project presented in the Philosophie der Arithmetik based on the principle that the entire mathematical science is grounded in the concept of cardinal number. It is argued that Husserl’s analysis of the nature of the symbols used in the decadal system forces the rejection of this principle. In the second part, I take into account Husserl’s explanation of why, albeit independent of natural numbers, the system is nonetheless correct. It is shown that its justification involves, on the one hand, a new conception of symbols and symbolic thinking, and on the other, the recognition of the question of “the formal” and formalization as pivotal to understand “the mathematical” overall.","PeriodicalId":42801,"journal":{"name":"Studia Phaenomenologica","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Knowledge and the Origin of Phenomenology\",\"authors\":\"Gabriele Baratelli\",\"doi\":\"10.5840/studphaen20212113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is divided into two parts. In the first one, I set forth a hypothesis to explain the failure of Husserl’s project presented in the Philosophie der Arithmetik based on the principle that the entire mathematical science is grounded in the concept of cardinal number. It is argued that Husserl’s analysis of the nature of the symbols used in the decadal system forces the rejection of this principle. In the second part, I take into account Husserl’s explanation of why, albeit independent of natural numbers, the system is nonetheless correct. It is shown that its justification involves, on the one hand, a new conception of symbols and symbolic thinking, and on the other, the recognition of the question of “the formal” and formalization as pivotal to understand “the mathematical” overall.\",\"PeriodicalId\":42801,\"journal\":{\"name\":\"Studia Phaenomenologica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Phaenomenologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5840/studphaen20212113\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Phaenomenologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5840/studphaen20212113","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

本文分为两部分。在第一篇中,我提出了一个假设来解释胡塞尔在《算术哲学》中提出的项目的失败,该项目基于整个数学科学建立在基数概念基础上的原则。有人认为,胡塞尔对年代际系统中使用的符号的性质的分析迫使人们拒绝这一原则。在第二部分,我考虑胡塞尔的解释,为什么尽管独立于自然数,这个系统仍然是正确的。它的正当性一方面涉及符号和符号思维的新概念,另一方面涉及对“形式”和形式化问题的认识,这是全面理解“数学”的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Knowledge and the Origin of Phenomenology
The paper is divided into two parts. In the first one, I set forth a hypothesis to explain the failure of Husserl’s project presented in the Philosophie der Arithmetik based on the principle that the entire mathematical science is grounded in the concept of cardinal number. It is argued that Husserl’s analysis of the nature of the symbols used in the decadal system forces the rejection of this principle. In the second part, I take into account Husserl’s explanation of why, albeit independent of natural numbers, the system is nonetheless correct. It is shown that its justification involves, on the one hand, a new conception of symbols and symbolic thinking, and on the other, the recognition of the question of “the formal” and formalization as pivotal to understand “the mathematical” overall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信