301 K下硬脂醛氯化铵在甲醇中的电导、声学和折射率行为研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Singh, S. Negi, M. Singh, K. Kishore
{"title":"301 K下硬脂醛氯化铵在甲醇中的电导、声学和折射率行为研究","authors":"C. Singh, S. Negi, M. Singh, K. Kishore","doi":"10.4152/pea.2022400102","DOIUrl":null,"url":null,"abstract":"Stearalkonium chloride (SAC) ultrasonic velocity has been measured in methanol, at 301 K temperature. Jacobson’s model has been used to evaluate adiabatic and molar compressibility, molar sound velocity, solvation number, relative association, relaxation strength and other acoustical constants. The results of ultrasonic measurements of different SAC solutions in methanol indicate that there is a signification interaction between SAC and methanol molecules in diluted solutions. The conductometric study indicates that SAC behaves as a weak electrolyte in methanol. The thermodynamic constants calculated from conductance measurements for SAC solutions in methanol depict that micellization is favored over dissociation processes. The refractive index variation with SAC solutions concentrations shows a marked change in the refractive index value at critical micelle concentrations (CMC). Data treatment of obtained ultrasonic velocity, conductance measurement and refractive index shows that there is significant interaction between SAC and methanol molecules in diluted solutions, and that SAC molecules do not aggregate appreciably below the CMC.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Conductance, Acoustical and Refractive Index Behavior of Stearalkonium Chloride in Methanol at 301 K\",\"authors\":\"C. Singh, S. Negi, M. Singh, K. Kishore\",\"doi\":\"10.4152/pea.2022400102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stearalkonium chloride (SAC) ultrasonic velocity has been measured in methanol, at 301 K temperature. Jacobson’s model has been used to evaluate adiabatic and molar compressibility, molar sound velocity, solvation number, relative association, relaxation strength and other acoustical constants. The results of ultrasonic measurements of different SAC solutions in methanol indicate that there is a signification interaction between SAC and methanol molecules in diluted solutions. The conductometric study indicates that SAC behaves as a weak electrolyte in methanol. The thermodynamic constants calculated from conductance measurements for SAC solutions in methanol depict that micellization is favored over dissociation processes. The refractive index variation with SAC solutions concentrations shows a marked change in the refractive index value at critical micelle concentrations (CMC). Data treatment of obtained ultrasonic velocity, conductance measurement and refractive index shows that there is significant interaction between SAC and methanol molecules in diluted solutions, and that SAC molecules do not aggregate appreciably below the CMC.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4152/pea.2022400102\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2022400102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在301 K温度下,测定了硬脂醛氯化铵(SAC)在甲醇中的超声速度。采用Jacobson模型计算了材料的绝热压缩率和摩尔压缩率、摩尔声速、溶剂化数、相对结合力、弛豫强度等声学常数。超声波测量甲醇中不同SAC溶液的结果表明,在稀释溶液中SAC与甲醇分子之间存在显著的相互作用。电导研究表明,SAC在甲醇中表现为弱电解质。热力学常数计算从电导测量的SAC溶液在甲醇中描述胶束化有利于解离过程。折射率随SAC溶液浓度的变化表明,在临界胶束浓度(CMC)处折射率值有显著变化。对得到的超声速度、电导测量和折射率的数据处理表明,在稀释溶液中,SAC分子与甲醇分子之间存在显著的相互作用,SAC分子在CMC以下没有明显的聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on Conductance, Acoustical and Refractive Index Behavior of Stearalkonium Chloride in Methanol at 301 K
Stearalkonium chloride (SAC) ultrasonic velocity has been measured in methanol, at 301 K temperature. Jacobson’s model has been used to evaluate adiabatic and molar compressibility, molar sound velocity, solvation number, relative association, relaxation strength and other acoustical constants. The results of ultrasonic measurements of different SAC solutions in methanol indicate that there is a signification interaction between SAC and methanol molecules in diluted solutions. The conductometric study indicates that SAC behaves as a weak electrolyte in methanol. The thermodynamic constants calculated from conductance measurements for SAC solutions in methanol depict that micellization is favored over dissociation processes. The refractive index variation with SAC solutions concentrations shows a marked change in the refractive index value at critical micelle concentrations (CMC). Data treatment of obtained ultrasonic velocity, conductance measurement and refractive index shows that there is significant interaction between SAC and methanol molecules in diluted solutions, and that SAC molecules do not aggregate appreciably below the CMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信