P. Chooto, W. A. Tappachai, S. Duangthong, S. Manaboot
{"title":"硫脲和N, O, s连接环化合物对铜的缓蚀作用","authors":"P. Chooto, W. A. Tappachai, S. Duangthong, S. Manaboot","doi":"10.4152/pea.202005343","DOIUrl":null,"url":null,"abstract":"Certain N, O, S-ligating ring compounds and thioureas were investigated to understand their role of copper corrosion inhibition in acetonitrile. For 5 quinones under study, including xanthone, xanthene, thioxanthone, acridone and 1,4-naphthoquinone, acridone was the best inhibitor, with Cu corrosion rate of 4.495 × 10 mm/year, whereas 1,4naphthoquinone exhibited the lowest inhibition, due to a lower number of nitrogen groups. With the presence of sulphur, to form a stronger bond with Cu, thioureas had better inhibiting behavior than quinones. Of 4 thioureas, namely thiourea (tu), diphenylthiourea (dptu), phenylthiourea (ptu), and ethylenethiourea (etu), the fourth shows the highest inhibition – with Cu corrosion rate of 2.27 × 10 mm/year – and the third shows the lowest one, due to the steric effect from the phenyl group. When halide ions are present, the inhibition efficiency of thioureas decreases, due to more preferable Cu complexation to halides; the strongest copper-halide bond formation occurred by the freest iodide ion, which is consistent with the results from X-ray crystallography and electrochemistry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Corrosion Inhibition of Copper by Thioureas and N, O, S-Ligating Ring Compounds\",\"authors\":\"P. Chooto, W. A. Tappachai, S. Duangthong, S. Manaboot\",\"doi\":\"10.4152/pea.202005343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certain N, O, S-ligating ring compounds and thioureas were investigated to understand their role of copper corrosion inhibition in acetonitrile. For 5 quinones under study, including xanthone, xanthene, thioxanthone, acridone and 1,4-naphthoquinone, acridone was the best inhibitor, with Cu corrosion rate of 4.495 × 10 mm/year, whereas 1,4naphthoquinone exhibited the lowest inhibition, due to a lower number of nitrogen groups. With the presence of sulphur, to form a stronger bond with Cu, thioureas had better inhibiting behavior than quinones. Of 4 thioureas, namely thiourea (tu), diphenylthiourea (dptu), phenylthiourea (ptu), and ethylenethiourea (etu), the fourth shows the highest inhibition – with Cu corrosion rate of 2.27 × 10 mm/year – and the third shows the lowest one, due to the steric effect from the phenyl group. When halide ions are present, the inhibition efficiency of thioureas decreases, due to more preferable Cu complexation to halides; the strongest copper-halide bond formation occurred by the freest iodide ion, which is consistent with the results from X-ray crystallography and electrochemistry.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4152/pea.202005343\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.202005343","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion Inhibition of Copper by Thioureas and N, O, S-Ligating Ring Compounds
Certain N, O, S-ligating ring compounds and thioureas were investigated to understand their role of copper corrosion inhibition in acetonitrile. For 5 quinones under study, including xanthone, xanthene, thioxanthone, acridone and 1,4-naphthoquinone, acridone was the best inhibitor, with Cu corrosion rate of 4.495 × 10 mm/year, whereas 1,4naphthoquinone exhibited the lowest inhibition, due to a lower number of nitrogen groups. With the presence of sulphur, to form a stronger bond with Cu, thioureas had better inhibiting behavior than quinones. Of 4 thioureas, namely thiourea (tu), diphenylthiourea (dptu), phenylthiourea (ptu), and ethylenethiourea (etu), the fourth shows the highest inhibition – with Cu corrosion rate of 2.27 × 10 mm/year – and the third shows the lowest one, due to the steric effect from the phenyl group. When halide ions are present, the inhibition efficiency of thioureas decreases, due to more preferable Cu complexation to halides; the strongest copper-halide bond formation occurred by the freest iodide ion, which is consistent with the results from X-ray crystallography and electrochemistry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.