{"title":"负载态氨介质中碳化钨硬质金属材料的动电位极化行为及显微观察","authors":"N. Randhawa, P. K. Katiyar","doi":"10.4152/pea.202003185","DOIUrl":null,"url":null,"abstract":"Electrochemical methods for the recycling of tungsten carbide (WC-10Co) resources suffer from passivation in the acidic medium caused by WO3 and also in NaOH electrolytes, due to hydroxide formation. We found that an ammoniacal solution is a promising electrolyte for sustainable electrochemical dissolution of both tungsten (W) and cobalt (Co). The ammoniacal medium performs greatly when supported with Cl, SO4 2and CO3 2ions. Poor dissolution/corrosion tendency of WC-10Co in a diluted NH4OH solution enhanced many folds in the presence of Cl , SO4 2and CO3 2ions. Among these supporting ions, Cl emerged as the most suitable for the electrochemical leaching of W and Co from the WC-10Co, accompanying the least noble behavior of WC-10Co. An electrolyte composed of 150 g/L of ammonia and 5% (w/v) of NH4Cl yielded the maximum anodic current density. Microscopic examination of the electrochemically treated samples shows scattered active sites responsible for the oxidative dissolution of WC-10Co. The usefulness of W and Co dissolution in ammonia-additive salt followed the order NH4OH-NH4Cl>NH4OH(NH4)2SO4>NH4OH-(NH4)2CO3..","PeriodicalId":20334,"journal":{"name":"Portugaliae Electrochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Potentiodynamic Polarization Behavior and Microscopic Examination of Tungsten Carbide Hard Metal Materials in Supported Ammoniacal Medium\",\"authors\":\"N. Randhawa, P. K. Katiyar\",\"doi\":\"10.4152/pea.202003185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical methods for the recycling of tungsten carbide (WC-10Co) resources suffer from passivation in the acidic medium caused by WO3 and also in NaOH electrolytes, due to hydroxide formation. We found that an ammoniacal solution is a promising electrolyte for sustainable electrochemical dissolution of both tungsten (W) and cobalt (Co). The ammoniacal medium performs greatly when supported with Cl, SO4 2and CO3 2ions. Poor dissolution/corrosion tendency of WC-10Co in a diluted NH4OH solution enhanced many folds in the presence of Cl , SO4 2and CO3 2ions. Among these supporting ions, Cl emerged as the most suitable for the electrochemical leaching of W and Co from the WC-10Co, accompanying the least noble behavior of WC-10Co. An electrolyte composed of 150 g/L of ammonia and 5% (w/v) of NH4Cl yielded the maximum anodic current density. Microscopic examination of the electrochemically treated samples shows scattered active sites responsible for the oxidative dissolution of WC-10Co. The usefulness of W and Co dissolution in ammonia-additive salt followed the order NH4OH-NH4Cl>NH4OH(NH4)2SO4>NH4OH-(NH4)2CO3..\",\"PeriodicalId\":20334,\"journal\":{\"name\":\"Portugaliae Electrochimica Acta\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Electrochimica Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4152/pea.202003185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Electrochimica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.202003185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Potentiodynamic Polarization Behavior and Microscopic Examination of Tungsten Carbide Hard Metal Materials in Supported Ammoniacal Medium
Electrochemical methods for the recycling of tungsten carbide (WC-10Co) resources suffer from passivation in the acidic medium caused by WO3 and also in NaOH electrolytes, due to hydroxide formation. We found that an ammoniacal solution is a promising electrolyte for sustainable electrochemical dissolution of both tungsten (W) and cobalt (Co). The ammoniacal medium performs greatly when supported with Cl, SO4 2and CO3 2ions. Poor dissolution/corrosion tendency of WC-10Co in a diluted NH4OH solution enhanced many folds in the presence of Cl , SO4 2and CO3 2ions. Among these supporting ions, Cl emerged as the most suitable for the electrochemical leaching of W and Co from the WC-10Co, accompanying the least noble behavior of WC-10Co. An electrolyte composed of 150 g/L of ammonia and 5% (w/v) of NH4Cl yielded the maximum anodic current density. Microscopic examination of the electrochemically treated samples shows scattered active sites responsible for the oxidative dissolution of WC-10Co. The usefulness of W and Co dissolution in ammonia-additive salt followed the order NH4OH-NH4Cl>NH4OH(NH4)2SO4>NH4OH-(NH4)2CO3..
期刊介绍:
Portugaliae Electrochimica Acta is a bi-monthly Journal published by the Portuguese Electrochemical Society since 1983. Portugaliae Electrochimica Acta publishes original papers, brief communications, reviews and letters concerned with every aspect of theory and practice of electrochemistry, as well as articles in which topics on history, science policy, education, etc. in the electrochemical field (teaching or research) may be discussed.