若干派生图的归一化拉普拉斯能量和类归一化拉普拉斯能量不变量

IF 0.4 Q4 MATHEMATICS
R. Amin, Sk. Md. Abu Nayeem
{"title":"若干派生图的归一化拉普拉斯能量和类归一化拉普拉斯能量不变量","authors":"R. Amin, Sk. Md. Abu Nayeem","doi":"10.57016/mv-keqn1312","DOIUrl":null,"url":null,"abstract":"For a connected graph $G$, the smallest normalized Laplacian eigenvalue is 0 while all others are positive and the largest cannot exceed the value 2. The sum of absolute deviations of the eigenvalues from 1 is called the normalized Laplacian energy, denoted by $\\mathbb{LE}(G)$. In analogy with Laplacian-energy-like invariant of $G$, we define here the normalized Laplacian-energy-like as the sum of square roots of normalized Laplacian eigenvalues of $G$, denoted by $\\mathbb{LEL}(G)$.","PeriodicalId":54181,"journal":{"name":"Matematicki Vesnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NORMALIZED LAPLACIAN ENERGY AND NORMALIZED LAPLACIAN-ENERGY-LIKE INVARIANT OF SOME DERIVED GRAPHS\",\"authors\":\"R. Amin, Sk. Md. Abu Nayeem\",\"doi\":\"10.57016/mv-keqn1312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a connected graph $G$, the smallest normalized Laplacian eigenvalue is 0 while all others are positive and the largest cannot exceed the value 2. The sum of absolute deviations of the eigenvalues from 1 is called the normalized Laplacian energy, denoted by $\\\\mathbb{LE}(G)$. In analogy with Laplacian-energy-like invariant of $G$, we define here the normalized Laplacian-energy-like as the sum of square roots of normalized Laplacian eigenvalues of $G$, denoted by $\\\\mathbb{LEL}(G)$.\",\"PeriodicalId\":54181,\"journal\":{\"name\":\"Matematicki Vesnik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematicki Vesnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57016/mv-keqn1312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematicki Vesnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57016/mv-keqn1312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于连通图$G$,最小的归一化拉普拉斯特征值为0,其他特征值均为正,最大特征值不能超过2。特征值与1的绝对偏差之和称为归一化拉普拉斯能量,用$\mathbb{LE}(G)$表示。与$G$的类拉普拉斯能量不变量类似,我们在这里定义归一化类拉普拉斯能量不变量为$G$的归一化拉普拉斯特征值的平方根和,记为$\mathbb{LEL}(G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NORMALIZED LAPLACIAN ENERGY AND NORMALIZED LAPLACIAN-ENERGY-LIKE INVARIANT OF SOME DERIVED GRAPHS
For a connected graph $G$, the smallest normalized Laplacian eigenvalue is 0 while all others are positive and the largest cannot exceed the value 2. The sum of absolute deviations of the eigenvalues from 1 is called the normalized Laplacian energy, denoted by $\mathbb{LE}(G)$. In analogy with Laplacian-energy-like invariant of $G$, we define here the normalized Laplacian-energy-like as the sum of square roots of normalized Laplacian eigenvalues of $G$, denoted by $\mathbb{LEL}(G)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematicki Vesnik
Matematicki Vesnik MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信