通过理想和格栅逼近空间

IF 0.4 Q4 MATHEMATICS
{"title":"通过理想和格栅逼近空间","authors":"","doi":"10.57016/mv-fuvt2928","DOIUrl":null,"url":null,"abstract":"In this paper, we use the notions of lower set $L_{R}(A)$ and the upper set $U_{R}(A)$ to define the interior operator ${\\rm int}_{R}^{A}$ and the closure operator ${\\rm cl}_{R}^{A}$ associated with a set $A$ in an approximation space $(X,R)$. These operators generate an approximation topological space different from the generated Nano topological space in $(X,R)$. Ideal approximation spaces $(X,R, \\ell)$ based on an ideal $\\ell$ joined to the approximation space $(X,R)$ are introduced as well. The approximation continuity and the ideal approximation continuity are defined. The lower separation axioms $T_{i}, i= 0,1,2$ are introduced in the approximation spaces and also in the ideal approximation spaces. Examples are given to explain the definitions. Connectedness in approximation spaces and ideal connectedness are introduced and the differences between them are explained. The interior and the closure operators are deduced using a grill ${\\cal G}$ defined on $(X,R)$, yielding the same results.","PeriodicalId":54181,"journal":{"name":"Matematicki Vesnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPROXIMATION SPACES VIA IDEALS AND GRILLS\",\"authors\":\"\",\"doi\":\"10.57016/mv-fuvt2928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the notions of lower set $L_{R}(A)$ and the upper set $U_{R}(A)$ to define the interior operator ${\\\\rm int}_{R}^{A}$ and the closure operator ${\\\\rm cl}_{R}^{A}$ associated with a set $A$ in an approximation space $(X,R)$. These operators generate an approximation topological space different from the generated Nano topological space in $(X,R)$. Ideal approximation spaces $(X,R, \\\\ell)$ based on an ideal $\\\\ell$ joined to the approximation space $(X,R)$ are introduced as well. The approximation continuity and the ideal approximation continuity are defined. The lower separation axioms $T_{i}, i= 0,1,2$ are introduced in the approximation spaces and also in the ideal approximation spaces. Examples are given to explain the definitions. Connectedness in approximation spaces and ideal connectedness are introduced and the differences between them are explained. The interior and the closure operators are deduced using a grill ${\\\\cal G}$ defined on $(X,R)$, yielding the same results.\",\"PeriodicalId\":54181,\"journal\":{\"name\":\"Matematicki Vesnik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematicki Vesnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57016/mv-fuvt2928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematicki Vesnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57016/mv-fuvt2928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用下集$L_{R}(A)$和上集$U_{R}(A)$的概念,定义了近似空间$(X,R)$中与集合$A$相关联的内算子${\rm int}_{R}^{A}$和闭包算子${\rm cl}_{R}^{A}$。这些算子生成的近似拓扑空间不同于$(X,R)$中生成的纳米拓扑空间。引入了基于理想$\ell$与近似空间$(X,R)$联接的理想$\ell$的理想近似空间$(X,R, \ell)$。定义了逼近连续性和理想逼近连续性。在逼近空间和理想逼近空间中引入了下分离公理$T_{i}, i= 0,1,2$。给出了一些例子来解释这些定义。介绍了近似空间中的连通性和理想连通性,并说明了它们之间的区别。内部操作符和闭包操作符使用在$(X,R)$上定义的格栅${\cal G}$推导,得到相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPROXIMATION SPACES VIA IDEALS AND GRILLS
In this paper, we use the notions of lower set $L_{R}(A)$ and the upper set $U_{R}(A)$ to define the interior operator ${\rm int}_{R}^{A}$ and the closure operator ${\rm cl}_{R}^{A}$ associated with a set $A$ in an approximation space $(X,R)$. These operators generate an approximation topological space different from the generated Nano topological space in $(X,R)$. Ideal approximation spaces $(X,R, \ell)$ based on an ideal $\ell$ joined to the approximation space $(X,R)$ are introduced as well. The approximation continuity and the ideal approximation continuity are defined. The lower separation axioms $T_{i}, i= 0,1,2$ are introduced in the approximation spaces and also in the ideal approximation spaces. Examples are given to explain the definitions. Connectedness in approximation spaces and ideal connectedness are introduced and the differences between them are explained. The interior and the closure operators are deduced using a grill ${\cal G}$ defined on $(X,R)$, yielding the same results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematicki Vesnik
Matematicki Vesnik MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信