非奇异正则幻方的推广

IF 0.4 Q4 MATHEMATICS
Phichet Jitjankarn, T. Rungratgasame
{"title":"非奇异正则幻方的推广","authors":"Phichet Jitjankarn, T. Rungratgasame","doi":"10.57016/mv-aqsi1967","DOIUrl":null,"url":null,"abstract":"A generalization of regular magic squares with magic sum $\\mu$ is an sq-corner (or square corner) magic square. It is a magic square satisfying the condition that the sum of 4 entries, square symmetrically placed with respect to the center, equals $\\frac{4\\mu}{n}$. Using the sq-corner magic squares of order $n$, a construction of sq-corner magic squares of order {$n+2$} is derived. Moreover, this construction provides some nonsingular classical sq-corner magic squares of all orders. In particular, a nonsingular regular magic square of any odd order can be constructed under this new method, as well.","PeriodicalId":54181,"journal":{"name":"Matematicki Vesnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GENERALIZATION OF NONSINGULAR REGULAR MAGIC SQUARES\",\"authors\":\"Phichet Jitjankarn, T. Rungratgasame\",\"doi\":\"10.57016/mv-aqsi1967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of regular magic squares with magic sum $\\\\mu$ is an sq-corner (or square corner) magic square. It is a magic square satisfying the condition that the sum of 4 entries, square symmetrically placed with respect to the center, equals $\\\\frac{4\\\\mu}{n}$. Using the sq-corner magic squares of order $n$, a construction of sq-corner magic squares of order {$n+2$} is derived. Moreover, this construction provides some nonsingular classical sq-corner magic squares of all orders. In particular, a nonsingular regular magic square of any odd order can be constructed under this new method, as well.\",\"PeriodicalId\":54181,\"journal\":{\"name\":\"Matematicki Vesnik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematicki Vesnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57016/mv-aqsi1967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematicki Vesnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57016/mv-aqsi1967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用魔术和$\mu$概括规则魔术正方形是一个方角(或方角)魔术正方形。它是一个神奇的正方形,满足4个元素的和,相对于中心对称的正方形,等于$\frac{4\mu}{n}$。利用阶为$n$的方角幻方,导出了阶为{$n+2$}的方角幻方的构造。此外,这种构造还提供了一些非奇异的所有阶的经典方角幻方。特别地,该方法还可以构造任意奇阶的非奇异正则幻方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GENERALIZATION OF NONSINGULAR REGULAR MAGIC SQUARES
A generalization of regular magic squares with magic sum $\mu$ is an sq-corner (or square corner) magic square. It is a magic square satisfying the condition that the sum of 4 entries, square symmetrically placed with respect to the center, equals $\frac{4\mu}{n}$. Using the sq-corner magic squares of order $n$, a construction of sq-corner magic squares of order {$n+2$} is derived. Moreover, this construction provides some nonsingular classical sq-corner magic squares of all orders. In particular, a nonsingular regular magic square of any odd order can be constructed under this new method, as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematicki Vesnik
Matematicki Vesnik MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信