{"title":"药物化合物喹啉(苯并[b]吡啶)分子结构、热力学参数、HOMO-LUMO及光谱分析的DFT研究","authors":"Meselu Eskezia Ayalew","doi":"10.4236/jbpc.2022.133003","DOIUrl":null,"url":null,"abstract":"Advances in computational chemistry have greatly increased its effectiveness and attractiveness as an emerging adjunct to experimental chemistry but also as an independent research field. This work studied some basic bonding Parameters, geometry, Uv-Visible spectra, HOMO-LUMO and harmonic vibrational frequencies of Quinoline were investigated by using density functional theory (DFT/6-31+ (d, p)) methods. The calculated wave numbers (B3LYP) agree properly with the determined wave numbers. The results obtained are then as compared with experimental statistics in which available. The structural parameters; thermochemistry, rotational constants, IR spectra and frequencies, bond distances, angles and dipole moment were obtained from the optimized stable geometries of the compound. The computed optimized geometric bond lengths and bond angles show good agreement with experimental data of the title compound. The calculated HOMO and LUMO energies indicate that charge transfer occurs within the molecule.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DFT Studies on Molecular Structure, Thermodynamics Parameters, HOMO-LUMO and Spectral Analysis of Pharmaceuticals Compound Quinoline (Benzo[b]Pyridine)\",\"authors\":\"Meselu Eskezia Ayalew\",\"doi\":\"10.4236/jbpc.2022.133003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in computational chemistry have greatly increased its effectiveness and attractiveness as an emerging adjunct to experimental chemistry but also as an independent research field. This work studied some basic bonding Parameters, geometry, Uv-Visible spectra, HOMO-LUMO and harmonic vibrational frequencies of Quinoline were investigated by using density functional theory (DFT/6-31+ (d, p)) methods. The calculated wave numbers (B3LYP) agree properly with the determined wave numbers. The results obtained are then as compared with experimental statistics in which available. The structural parameters; thermochemistry, rotational constants, IR spectra and frequencies, bond distances, angles and dipole moment were obtained from the optimized stable geometries of the compound. The computed optimized geometric bond lengths and bond angles show good agreement with experimental data of the title compound. The calculated HOMO and LUMO energies indicate that charge transfer occurs within the molecule.\",\"PeriodicalId\":62927,\"journal\":{\"name\":\"生物物理化学(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理化学(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jbpc.2022.133003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jbpc.2022.133003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DFT Studies on Molecular Structure, Thermodynamics Parameters, HOMO-LUMO and Spectral Analysis of Pharmaceuticals Compound Quinoline (Benzo[b]Pyridine)
Advances in computational chemistry have greatly increased its effectiveness and attractiveness as an emerging adjunct to experimental chemistry but also as an independent research field. This work studied some basic bonding Parameters, geometry, Uv-Visible spectra, HOMO-LUMO and harmonic vibrational frequencies of Quinoline were investigated by using density functional theory (DFT/6-31+ (d, p)) methods. The calculated wave numbers (B3LYP) agree properly with the determined wave numbers. The results obtained are then as compared with experimental statistics in which available. The structural parameters; thermochemistry, rotational constants, IR spectra and frequencies, bond distances, angles and dipole moment were obtained from the optimized stable geometries of the compound. The computed optimized geometric bond lengths and bond angles show good agreement with experimental data of the title compound. The calculated HOMO and LUMO energies indicate that charge transfer occurs within the molecule.