Gibbs-Donnan电位作为膜囊极化的工具

Mazur Iuliia, Kosterin Sergiy, V. Tetyana, Shkrabak Oleksandr
{"title":"Gibbs-Donnan电位作为膜囊极化的工具","authors":"Mazur Iuliia, Kosterin Sergiy, V. Tetyana, Shkrabak Oleksandr","doi":"10.4236/JBPC.2014.52009","DOIUrl":null,"url":null,"abstract":"It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation medium”) stable transmembrane potential can be formed, which value is sufficient to fit requirement of real transmembrane potential. Four partial cases were considered with different location and charge of impermeable ion and it was concluded that locations of impermeable ions in medium provide stable transmembrane potential with sufficient value of 60 - 70 mV. Potential-sensitive probe, such as DiOC6(3) and oxonol VI, were used to confirm the calculated potential. According to the change in fluorescence level and emission/excitation shift, a stable and relatively high transmembrane potential can be formed if salt of impermeable ion is located in incubation medium. Impermeable cations and anions may be used to create positive and negative transmembrane potential respectively.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gibbs-Donnan Potential as a Tool for Membrane Vesicles Polarization\",\"authors\":\"Mazur Iuliia, Kosterin Sergiy, V. Tetyana, Shkrabak Oleksandr\",\"doi\":\"10.4236/JBPC.2014.52009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation medium”) stable transmembrane potential can be formed, which value is sufficient to fit requirement of real transmembrane potential. Four partial cases were considered with different location and charge of impermeable ion and it was concluded that locations of impermeable ions in medium provide stable transmembrane potential with sufficient value of 60 - 70 mV. Potential-sensitive probe, such as DiOC6(3) and oxonol VI, were used to confirm the calculated potential. According to the change in fluorescence level and emission/excitation shift, a stable and relatively high transmembrane potential can be formed if salt of impermeable ion is located in incubation medium. Impermeable cations and anions may be used to create positive and negative transmembrane potential respectively.\",\"PeriodicalId\":62927,\"journal\":{\"name\":\"生物物理化学(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理化学(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBPC.2014.52009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2014.52009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从理论上预测,在导致Gibbs-Donnan平衡的条件下,当一个腔室的大小与另一个腔室的大小相差很大时(如在“膜泡/脂质体-培养液”系统中),可以形成稳定的跨膜电位,其值足以满足实际跨膜电位的要求。考虑了4种不透离子位置和电荷不同的局部情况,认为介质中不透离子的位置提供了稳定的跨膜电位,其足够值为60 ~ 70 mV。用DiOC6(3)、oxonol VI等电位敏感探针对计算电位进行确认。根据荧光水平的变化和发射/激发位移,在培养介质中加入不渗透离子盐可以形成稳定且较高的跨膜电位。不可渗透的阳离子和阴离子可分别用于产生正的和负的跨膜电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gibbs-Donnan Potential as a Tool for Membrane Vesicles Polarization
It has been theoretically predicted that under conditions leading to Gibbs-Donnan equilibrium in case when size of one compartment is very different from another (as in system “membrane vesicle/liposomes—incubation medium”) stable transmembrane potential can be formed, which value is sufficient to fit requirement of real transmembrane potential. Four partial cases were considered with different location and charge of impermeable ion and it was concluded that locations of impermeable ions in medium provide stable transmembrane potential with sufficient value of 60 - 70 mV. Potential-sensitive probe, such as DiOC6(3) and oxonol VI, were used to confirm the calculated potential. According to the change in fluorescence level and emission/excitation shift, a stable and relatively high transmembrane potential can be formed if salt of impermeable ion is located in incubation medium. Impermeable cations and anions may be used to create positive and negative transmembrane potential respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
144
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信