基于改进Bat算法的无线传感器网络高能效拥塞控制方案

M. S. Manshahia, M. Dave, S. Singh
{"title":"基于改进Bat算法的无线传感器网络高能效拥塞控制方案","authors":"M. S. Manshahia, M. Dave, S. Singh","doi":"10.4236/WSN.2016.811018","DOIUrl":null,"url":null,"abstract":"Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).","PeriodicalId":58712,"journal":{"name":"无线传感网络(英文)","volume":"08 1","pages":"229-241"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Improved Bat Algorithm Based Energy Efficient Congestion Control Scheme for Wireless Sensor Networks\",\"authors\":\"M. S. Manshahia, M. Dave, S. Singh\",\"doi\":\"10.4236/WSN.2016.811018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).\",\"PeriodicalId\":58712,\"journal\":{\"name\":\"无线传感网络(英文)\",\"volume\":\"08 1\",\"pages\":\"229-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"无线传感网络(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/WSN.2016.811018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线传感网络(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WSN.2016.811018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

节能和拥塞控制是近年来无线传感器网络研究的热点。主要目标是建立一个基于源目的地距离和节点剩余能量的优化路径模型。本文介绍了一种基于自然启发的改进Bat算法在无线传感器网络传输层控制拥塞的实现。将该算法应用于适应度函数,得到最优解。仿真结果表明,与CODA(拥塞检测和避免)、PSO(粒子群优化)算法和ACO(蚁群优化)算法相比,网络寿命和吞吐量等参数有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bat Algorithm Based Energy Efficient Congestion Control Scheme for Wireless Sensor Networks
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
279
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信