Nicolas Rouleau, Trevor N. Carniello, M. Persinger
{"title":"非局部pH位移和共享变化角速度磁场:离散能量和点持续时间的重要性","authors":"Nicolas Rouleau, Trevor N. Carniello, M. Persinger","doi":"10.4236/JBPC.2014.52006","DOIUrl":null,"url":null,"abstract":"Macroscopic productions of “non-locality” or “excess correlations” of dynamic changes within media between two spaces could be utilized as alternative communication systems. Previous experiments have shown that injections of a weak acid within one of two volumes of spring water sharing the same patterned circular magnetic fields with changing angular accelerations separated by non-traditional (5 m) distances were associated with opposite (basic) shifts in pH within the non-injected, non-local volume. In the present experiments, employing a different technology, pairs of beakers separated by 1 m containing either 25 cc, 50 cc, or 100 cc of spring water were placed within toroids generating weak (30, 300 nT) changing acceleration magnetic fields with 1 ms, 2 ms, or 3 ms point durations or a field whose point durations changed. When a proton source (weak acid) was injected into one beaker (local) pH shifts in the other (non-local) beaker exhibit increased acidity for the 3 ms point duration but increased alkalinity for the 1 ms duration. Neither intermittent point durations nor variable point durations for the same volumes of water placed between the two magnetic field-coupled beakers exhibited significant changes from baseline. Contingent upon the point duration of the applied field, the pH shift was consistent with a fixed quantity of decreased free protons (increased pH) or increased protons (decreased pH) in the non-local beakers. The opposite directions of the pH shifts at 1 ms and 3 ms that correspond to quantitative cosmological solutions for electrons and protons suggest these results may reflect a fundamental physical process.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Non-Local pH Shifts and Shared Changing Angular Velocity Magnetic Fields: Discrete Energies and the Importance of Point Durations\",\"authors\":\"Nicolas Rouleau, Trevor N. Carniello, M. Persinger\",\"doi\":\"10.4236/JBPC.2014.52006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macroscopic productions of “non-locality” or “excess correlations” of dynamic changes within media between two spaces could be utilized as alternative communication systems. Previous experiments have shown that injections of a weak acid within one of two volumes of spring water sharing the same patterned circular magnetic fields with changing angular accelerations separated by non-traditional (5 m) distances were associated with opposite (basic) shifts in pH within the non-injected, non-local volume. In the present experiments, employing a different technology, pairs of beakers separated by 1 m containing either 25 cc, 50 cc, or 100 cc of spring water were placed within toroids generating weak (30, 300 nT) changing acceleration magnetic fields with 1 ms, 2 ms, or 3 ms point durations or a field whose point durations changed. When a proton source (weak acid) was injected into one beaker (local) pH shifts in the other (non-local) beaker exhibit increased acidity for the 3 ms point duration but increased alkalinity for the 1 ms duration. Neither intermittent point durations nor variable point durations for the same volumes of water placed between the two magnetic field-coupled beakers exhibited significant changes from baseline. Contingent upon the point duration of the applied field, the pH shift was consistent with a fixed quantity of decreased free protons (increased pH) or increased protons (decreased pH) in the non-local beakers. The opposite directions of the pH shifts at 1 ms and 3 ms that correspond to quantitative cosmological solutions for electrons and protons suggest these results may reflect a fundamental physical process.\",\"PeriodicalId\":62927,\"journal\":{\"name\":\"生物物理化学(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理化学(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBPC.2014.52006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2014.52006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Local pH Shifts and Shared Changing Angular Velocity Magnetic Fields: Discrete Energies and the Importance of Point Durations
Macroscopic productions of “non-locality” or “excess correlations” of dynamic changes within media between two spaces could be utilized as alternative communication systems. Previous experiments have shown that injections of a weak acid within one of two volumes of spring water sharing the same patterned circular magnetic fields with changing angular accelerations separated by non-traditional (5 m) distances were associated with opposite (basic) shifts in pH within the non-injected, non-local volume. In the present experiments, employing a different technology, pairs of beakers separated by 1 m containing either 25 cc, 50 cc, or 100 cc of spring water were placed within toroids generating weak (30, 300 nT) changing acceleration magnetic fields with 1 ms, 2 ms, or 3 ms point durations or a field whose point durations changed. When a proton source (weak acid) was injected into one beaker (local) pH shifts in the other (non-local) beaker exhibit increased acidity for the 3 ms point duration but increased alkalinity for the 1 ms duration. Neither intermittent point durations nor variable point durations for the same volumes of water placed between the two magnetic field-coupled beakers exhibited significant changes from baseline. Contingent upon the point duration of the applied field, the pH shift was consistent with a fixed quantity of decreased free protons (increased pH) or increased protons (decreased pH) in the non-local beakers. The opposite directions of the pH shifts at 1 ms and 3 ms that correspond to quantitative cosmological solutions for electrons and protons suggest these results may reflect a fundamental physical process.