链接学术内容:论证图的设计与构建

IF 0.6 4区 管理学 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Ningyuan Song, Hanghang Cheng, Huimin Zhou, Xiaoguang Wang
{"title":"链接学术内容:论证图的设计与构建","authors":"Ningyuan Song, Hanghang Cheng, Huimin Zhou, Xiaoguang Wang","doi":"10.5771/0943-7444-2022-4-213","DOIUrl":null,"url":null,"abstract":"In this study, we propose a way to link the scholarly contents of scientific papers by constructing a knowledge graph based on the semantic organization of argumentation units and relations in scientific papers. We carried out an argumentation graph data model aimed at linking multiple discourses, and also developed a semantic annotation platform for scientific papers and an argumentation graph visualization system. A construction experiment was performed using 12 articles. The final argumentation graph has 1,262 nodes and 1,628 edges, including 1,628 intra-article relations and 190 inter-article relations. Knowledge evolution representation, strategic reading, and automatic abstracting use cases are presented to demonstrate the application of the argumentation graph. In contrast to existing knowledge graphs used in academic fields, the argumentation graph better supports the organization and representation of scientific paper content and can be used as data infrastructure in scientific knowledge retrieval, reorganization, reasoning, and evolution. Moreover, it supports automatic abstract and strategic reading.","PeriodicalId":46091,"journal":{"name":"Knowledge Organization","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking Scholarly Contents: The Design and Construction of an Argumentation Graph\",\"authors\":\"Ningyuan Song, Hanghang Cheng, Huimin Zhou, Xiaoguang Wang\",\"doi\":\"10.5771/0943-7444-2022-4-213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a way to link the scholarly contents of scientific papers by constructing a knowledge graph based on the semantic organization of argumentation units and relations in scientific papers. We carried out an argumentation graph data model aimed at linking multiple discourses, and also developed a semantic annotation platform for scientific papers and an argumentation graph visualization system. A construction experiment was performed using 12 articles. The final argumentation graph has 1,262 nodes and 1,628 edges, including 1,628 intra-article relations and 190 inter-article relations. Knowledge evolution representation, strategic reading, and automatic abstracting use cases are presented to demonstrate the application of the argumentation graph. In contrast to existing knowledge graphs used in academic fields, the argumentation graph better supports the organization and representation of scientific paper content and can be used as data infrastructure in scientific knowledge retrieval, reorganization, reasoning, and evolution. Moreover, it supports automatic abstract and strategic reading.\",\"PeriodicalId\":46091,\"journal\":{\"name\":\"Knowledge Organization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge Organization\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.5771/0943-7444-2022-4-213\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Organization","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5771/0943-7444-2022-4-213","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种基于科学论文中论证单元和关系的语义组织,构建知识图谱的方法来链接科学论文的学术内容。我们开展了旨在链接多个话语的论证图数据模型,开发了科技论文语义标注平台和论证图可视化系统。构建实验采用12件材料。最终的论证图有1262个节点和1628条边,其中包括1628条文章内关系和190条文章间关系。提出了知识演化表示、策略阅读和自动抽象用例来演示论证图的应用。与现有学术领域使用的知识图相比,论证图更好地支持了科学论文内容的组织和表示,可以作为科学知识检索、重组、推理和进化的数据基础设施。此外,它还支持自动抽象和策略阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linking Scholarly Contents: The Design and Construction of an Argumentation Graph
In this study, we propose a way to link the scholarly contents of scientific papers by constructing a knowledge graph based on the semantic organization of argumentation units and relations in scientific papers. We carried out an argumentation graph data model aimed at linking multiple discourses, and also developed a semantic annotation platform for scientific papers and an argumentation graph visualization system. A construction experiment was performed using 12 articles. The final argumentation graph has 1,262 nodes and 1,628 edges, including 1,628 intra-article relations and 190 inter-article relations. Knowledge evolution representation, strategic reading, and automatic abstracting use cases are presented to demonstrate the application of the argumentation graph. In contrast to existing knowledge graphs used in academic fields, the argumentation graph better supports the organization and representation of scientific paper content and can be used as data infrastructure in scientific knowledge retrieval, reorganization, reasoning, and evolution. Moreover, it supports automatic abstract and strategic reading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge Organization
Knowledge Organization INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.40
自引率
28.60%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信